932 resultados para Genetic of populations
Resumo:
Studies on natural populations and harvesting biological resources have led to the view, commonly held, that (i) populations exhibiting chaotic oscillations run a high risk of extinction; and (ii) a decrease in emigration/exploitation may reduce the risk of extinction. Here we describe a simple ecological model with emigration/depletion that shows behavior in contrast to this. This model displays unusual dynamics of extinction and survival, where populations growing beyond a critical rate can persist within a band of high depletion rates, whereas extinction occurs for lower depletion rates. Though prior to extinction at lower depletion rates the population exhibits chaotic dynamics with large amplitudes of variation and very low minima, at higher depletion rates the population persists at chaos but with reduced variation and increased minima. For still higher values, within the band of persistence, the dynamics show period reversal leading to stability. These results illustrate that chaos does not necessarily lead to population extinction. In addition, the persistence of populations at high depletion rates has important implications in the considerations of strategies for the management of biological resources.
Resumo:
A general method has been developed to analyze all 2' hydroxyl groups involved in tertiary interactions in RNA in a single experiment. This method involves comparing the activity of populations of circularly permuted RNAs that contain or lack potential hydrogen-bond donors at each position. The 2' hydroxyls of the pre-tRNA substrate identified as potential hydrogen bond donors in intermolecular interactions with the ribozyme from eubacterial RNase P (P RNA) are located in the T stem and T loop, acceptor stem, and 3' CCA regions. To locate the hydrogen-bond acceptors for one of those 2' hydroxyls in the P RNA, a phylogenetically conserved adenosine was mutated to a guanosine. When this mutant P RNA was used, increased cleavage activity of a single circularly permuted substrate within the population was observed. The cleavage efficiency (kcat/Km) of a singly 2'-deoxy-substituted substrate at this position in the T stem was also determined. For the wild-type P RNA, the catalytic efficiency was significantly decreased compared with that of the all-ribo substrate, consistent with the notion that this 2' hydroxyl plays an important role. For the P RNA mutant, no additional effect was found upon 2'-deoxy substitution. We propose that this particular 2' hydroxyl in the pre-tRNA interacts specifically with this adenosine in the P RNA. This method should be useful in examining the role of 2' hydroxyl groups in other RNA-RNA and RNA-protein complexes.
Resumo:
The paleontological record of the lower and middle Paleozoic Appalachian foreland basin demonstrates an unprecedented level of ecological and morphological stability on geological time scales. Some 70-80% of fossil morphospecies within assemblages persist in similar relative abundances in coordinated packages lasting as long as 7 million years despite evidence for environmental change and biotic disturbances. These intervals of stability are separated by much shorter periods of ecological and evolutionary change. This pattern appears widespread in the fossil record. Existing concepts of the evolutionary process are unable to explain this uniquely paleontological observation of faunawide coordinated stasis. A principle of evolutionary stability that arises from the ecosystem is explored here. We propose that hierarchical ecosystem theory, when extended to geological time scales, can explain long-term paleoecological stability as the result of ecosystem organization in response to high-frequency disturbance. The accompanying stability of fossil morphologies results from "ecological locking," in which selection is seen as a high-rate response of populations that is hierarchically constrained by lower-rate ecological processes. When disturbance exceeds the capacity of the system, ecological crashes remove these higher-level constraints, and evolution is free to proceed at high rates of directional selection during the organization of a new stable ecological hierarchy.
Resumo:
A estrutura populacional e o desequilíbrio de ligação são dois processos fundamentais para estudos evolutivos e de mapeamento associativo. Tradicionalmente, ambos têm sido investigados por meio de métodos clássicos comumente utilizados. Tais métodos certamente forneceram grandes avanços no entendimento dos processos evolutivos das espécies. No entanto, em geral, nenhum deles utiliza uma visão genealógica de forma a considerar eventos genéticos ocorridos no passado, dificultando a compreensão dos padrões de variação observados no presente. Uma abordagem que possibilita a investigação retrospectiva com base no atual polimorfismo observado é a teoria da coalescência. Assim, o objetivo deste trabalho foi analisar, com base na teoria da coalescência, a estrutura populacional e o desequilíbrio de ligação de um painel mundial de acessos de sorgo (Sorghum bicolor). Para tanto, análises de mutação, migração com fluxo gênico e recombinação foram realizadas para cinco regiões genômicas relacionadas à altura de plantas e maturidade (Dw1, Dw2, Dw4, Ma1 e Ma3) e sete populações previamente selecionadas. Em geral, elevado fluxo gênico médio (Μ = m/μ = 41,78 − 52,07) foi observado entre as populações considerando cada região genômica e todas elas simultaneamente. Os padrões sugeriram intenso intercâmbio de acessos e história evolutiva específica para cada região genômica, mostrando a importância da análise individual dos locos. A quantidade média de migrantes por geração (Μ) não foi simétrica entre pares recíprocos de populações, de acordo com a análise individual e simultânea das regiões. Isso sugere que a forma pela qual as populações se relacionaram e continuam interagindo evolutivamente não é igual, mostrando que os métodos clássicos utilizados para investigar estrutura populacional podem ser insatisfatórios. Baixas taxas médias de recombinação (ρL = 2Ner = 0,030 − 0,246) foram observadas utilizando o modelo de recombinação constante ao longo da região. Baixas e altas taxas médias de recombinação (ρr = 2Ner = 0,060 − 3,395) foram estimadas utilizando o modelo de recombinação variável ao longo da região. Os métodos tradicional (r2) e via coalescência (E[r2 rhomap]) utilizados para a estimação do desequilíbrio de ligação mostraram resultados próximos para algumas regiões genômicas e populações. No entanto, o r2 sugeriu padrões descontínuos de desequilíbrio em várias ocasiões, dificultando o entendimento e a caracterização de possíveis blocos de associação. O método via coalescência (E[r2 rhomap]) forneceu resultados que pareceram ter sido mais consistentes, podendo ser uma estratégia eventualmente importante para um refinamento dos padrões não-aleatórios de associação. Os resultados aqui encontrados sugerem que o mapeamento genético a partir de um único pool gênico pode ser insuficiente para detectar associações causais importantes para características quantitativas em sorgo.
Resumo:
A obtenção de genótipos superiores no melhoramento de plantas depende da existência de variabilidade genética. A existência de coleções de germoplasma representativas e a utilização de um tamanho adequado de amostra são fundamentais para a preservação das frequências alélicas e genotípicas, diminuindo a perda de variabilidade genética e postergando o aparecimento dos efeitos da deriva genética. Assim, teve-se como objetivo avaliar os efeitos da deriva genética em caracteres quantitativos em subpopulações de milho. Este estudo foi realizado a partir das populações originais BR-105 e BR-106, das quais 10 subpopulações foram obtidas em cada um dos cinco ciclos sucessivos de amostragem com tamanho efetivo reduzido, totalizando 50 subpopulações para cada população original, as quais foram posteriormente autofecundadas, gerando um nível a mais de endogamia. Os tratamentos foram constituídos de 10 amostras da população original sem autofecundação, 10 amostras com autofecundação, 50 subpopulações obtidas da população original e 50 subpopulações autofecundadas, totalizando 120 tratamentos para cada população, avaliados separadamente. Utilizou-se o delineamento em blocos casualizados no esquema de parcelas subdivididas em faixas hierárquico, em quatro ambientes com duas repetições por ambiente. Os caracteres avaliados foram produção de grãos (PG), prolificidade (PROL), comprimento e diâmetro de espigas (CE e DE), número de fileiras por espiga (NFE), número de grãos por fileira (NGF), altura de planta e espiga (AP e AE), florescimento masculino e feminino (FM e FF) e número de ramificações do pendão (NRP). Foram estimados os efeitos da deriva genética entre as médias das subpopulações nos dois níveis de endogamia e os efeitos da depressão por endogamia nas subpopulações dentro dos ciclos. Posteriormente, realizaram-se análises de regressão linear para as subpopulações nos dois níveis de endogamia, separadamente, e em conjunto. Foi verificada uma grande variação nas médias das subpopulações ao longo dos ciclos, indicando que a deriva genética causou diferenciação entre as mesmas e que estas se diferenciaram das populações originais. Detectaram-se efeitos significativos da deriva genética nas populações não autofecundadas para todos os caracteres avaliados, em maior número para PG, já que este caráter é mais sensível à deriva genética por possuir maior grau de dominância que os demais. Houve diminuição no número de estimativas de deriva significativas para as populações autofecundadas, incluindo mudanças na magnitude e no sinal das mesmas em relação às populações não autofecundadas. Para as estimativas de depressão por endogamia, os caracteres PG, NGF, FM e FF apresentaram maior quantidade de estimativas significativas que os demais. Para a maioria dos caracteres, a regressão linear explicou a maior parte da variação encontrada com o aumento dos coeficientes de endogamia. As populações BR-105 e BR-106, por terem estruturas genéticas distintas, apresentaram performances diferentes quanto aos efeitos da deriva genética. Enfim, como a deriva genética interfere na integridade genética das populações, torna-se importante considerar seus efeitos na coleta e manutenção dos bancos de germoplasma e nas populações utilizadas no melhoramento genético de plantas.
Resumo:
Background: The liberalisation of trade in services which began in 1995 under the General Agreement on Trade in Services (GATS) of the World Trade Organisation (WTO) has generated arguments for and against its potential health effects. Our goal was to explore the relationship between the liberalisation of services under the GATS and three health indicators – life expectancy (LE), under-5 mortality (U5M) and maternal mortality (MM) - since the WTO was established. Methods and Findings: This was a cross-sectional ecological study that explored the association in 2010 and 1995 between liberalisation and health (LE, U5M and MM), and between liberalisation and progress in health in the period 1995–2010, considering variables related to economic and social policies such as per capita income (GDP pc), public expenditure on health (PEH), and income inequality (Gini index). The units of observation and analysis were WTO member countries with data available for 2010 (n = 116), 1995 (n = 114) and 1995–2010 (n = 114). We conducted bivariate and multivariate linear regression analyses adjusted for GDP pc, Gini and PEH. Increased global liberalisation in services under the WTO was associated with better health in 2010 (U5M: 20.358 p,0.001; MM: 20.338 p = 0.001; LE: 0.247 p = 0.008) and in 1995, after adjusting for economic and social policy variables. For the period 1995–2010, progress in health was associated with income equality, PEH and per capita income. No association was found with global liberalisation in services. Conclusions: The favourable association in 2010 between health and liberalisation in services under the WTO seems to reflect a pre-WTO association observed in the 1995 data. However, this liberalisation did not appear as a factor associated with progress in health during 1995–2010. Income equality, health expenditure and per capita income were more powerful determinants of the health of populations.
Resumo:
1) Our study addresses the role of non-genetic and genetic inheritance in shaping the adaptive potential of populations under a warming ocean scenario. We used a combined experimental approach (transgenerational plasticity and quantitative genetics) to partition the relative contribution of maternal vs. paternal (additive genetic) effects to offspring body size (a key component of fitness), and investigated a potential physiological mechanism (mitochondrial respiration capacities) underlying whole organism growth/size responses. 2) In very early stages of growth (up to 30 days), offspring body size of marine sticklebacks benefited from maternal transgenerational plasticity (TGP): offspring of mothers acclimated to17°C were larger when reared at 17°C, and offspring of mothers acclimated to 21°C were larger when reared at 21°C. The benefits of maternal TGP on body size were stronger and persisted longer (up to 60 days) for offspring reared in the warmer (21°C) environment, suggesting that maternal effects will be highly relevant for climate change scenarios in this system. 3) Mitochondrial respiration capacities measured on mature offspring (F1 adults) matched the pattern of TGP for juvenile body size, providing an intuitive mechanistic basis for the maternal acclimation persisting into adulthood. Size differences between temperatures seen at early growth stages remained in the F1 adults, linking offspring body size to maternal inheritance of mitochondria. 4) Lower maternal variance components in the warmer environment were mostly driven by mothers acclimated to ambient (colder) conditions, further supporting our tenet that maternal effects were stronger at elevated temperature. Importantly, all parent-offspring temperature combination groups showed genotype x environment (GxE) interactions, suggesting that reaction norms have the potential to evolve. 5) To summarise, transgenerational plasticity and genotype x environment interactions work in concert to mediate impacts of ocean warming on metabolic capacity and early growth of marine sticklebacks. TGP can buffer short-term detrimental effects of climate warming and may buy time for genetic adaptation to catch up, therefore markedly contributing to the evolutionary potential and persistence of populations under climate change.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
There is a wealth of literature documenting a directional change of body size in heavily harvested populations. Most of this work concentrates on aquatic systems, but terrestrial populations are equally at risk. This paper explores the capacity of harvest refuges to counteract potential effects of size-selective harvesting on the allele frequency,of populations. We constructed a stochastic, individual-based model parameterized with data on red kangaroos. Because we do not know which part of individual growth would change in the course of natural selection, we explored the effects of two alternative models of individual growth in which alleles affect either the growth rate or the maximum size. The model results show that size-selective harvesting can result in significantly smaller kangaroos for a given age when the entire population is subject to harvesting. In contrast, in scenarios that include dispersal from harvest refuges, the initial allele frequency remains virtually unchanged.
Resumo:
Phylogeographic analyses of the fauna of the Australian wet tropics rainforest have provided strong evidence for long-term isolation of populations among allopatric refugia, yet typically there is no corresponding divergence in morphology. This system provides an opportunity to examine the consequences of geographic isolation, independent of morphological divergence, and thus to assess the broader significance of historical subdivisions revealed through mitochondrial DNA phylogeography. We have located and characterized a zone of secondary contact between two long isolated (mtDNA divergence > 15%) lineages of the skink Carlia rubrigularis using one mitochondrial and eight nuclear (two intron, six microsatellite) markers. This revealed a remarkably narrow (width < 3 km) hybrid zone with substantial linkage disequilibrium and strong deficits of heterozygotes at two of three nuclear loci with diagnostic alleles. Cline centers were coincident across loci. Using a novel form of likelihood analysis, we were unable to distinguish between sigmoidal and stepped cline shapes except at one nuclear locus for which the latter was inferred. Given estimated dispersal rates of 90-133 m x gen(-1/2) and assuming equilibrium, the observed cline widths suggest effective selection against heterozygotes of at least 22-49% and possibly as high as 70%. These observations reveal substantial postmating isolation, although the absence of consistent deviations from Hardy-Weinberg equilibrium at diagnostic loci suggests that there is little accompanying premating isolation. The tight geographic correspondence between transitions in mtDNA and those for nuclear genes and corresponding evidence for selection against hybrids indicates that these morphologically cryptic phylogroups could be considered as incipient species. Nonetheless, we caution against the use of mtDNA phylogeography as a sole criterion for defining species boundaries.
Resumo:
Ecological processes are central to the formation of new species when barriers to gene flow (reproductive isolation) evolve between populations as a result of ecologically-based divergent selection. Although laboratory and field studies provide evidence that 'ecological speciation' can occur, our understanding of the details of the process is incomplete. Here we review ecological speciation by considering its constituent components: an ecological source of divergent selection, a form of reproductive isolation, and a genetic mechanism linking the two. Sources of divergent selection include differences in environment or niche, certain forms of sexual selection, and the ecological interaction of populations. We explore the evidence for the contribution of each to ecological speciation. Forms of reproductive isolation are diverse and we discuss the likelihood that each may be involved in ecological speciation. Divergent selection on genes affecting ecological traits can be transmitted directly (via pleiotropy) or indirectly (via linkage disequilibrium) to genes causing reproductive isolation and we explore the consequences of both. Along with these components, we also discuss the geography and the genetic basis of ecological speciation. Throughout, we provide examples from nature, critically evaluate their quality, and highlight areas where more work is required.
Resumo:
Telemedicine activities in underserved communities were reviewed as part of the Universitas 21 (U21) e-health project. A SWOT analysis (strengths, weaknesses, opportunities, threats) was conducted on 12 articles identified in a literature review, supplemented by expertise from U21 members. The analysis showed that threats include the reluctance of populations to use telemedicine services, and a general absence of infrastructure and resources to sustain them. Opportunities centre around potential research, including cost-effectiveness analyses and quantitative assessments of existing telemedicine services. The great strength of telemedicine is that it can improve access to health services among those most in need. However, its greatest weakness is the lack of evidence supporting its clinical and cost advantages relative to traditional services. This represents an important opportunity for research on telemedicine initiatives among underserved populations.
Resumo:
Analysis of gene flow and migration of Helicoverpa armigera (Hubner) in a major cropping region of Australia identified substantial genetic structuring, migration events, and significant population genotype changes over the 38-mo sample period from November 1999 to January 2003. Five highly variable microsatellite markers were used to analyze 916 individuals from 77 collections across 10 localities in the Darling Downs. The molecular data indicate that in some years (e.g., April 2002-March 2003), low levels of H. armigera migration and high differentiation between populations occurred, whereas in other years (e.g., April 2001-March 2002), there were higher levels of adult moth movement resulting in little local structuring of populations. Analysis of populations in other Australian cropping regions provided insight into the quantity and direction of immigration of H. armigera adults into the Darling Downs growing region of Australia. These data provide evidence adult moth movement differs from season to season, highlighting the importance of studies in groups such as the Lepidoptera extending over consecutive years, because short-term sampling may be misleading when population dynamics and migration change so significantly. This research demonstrates the importance of maintaining a coordinated insecticide resistance management strategy, because in some years H. armigera populations may be independent within a region and thus significantly influenced by local management practices; however, periods with high migration will occur and resistance may rapidly spread.
Resumo:
Ornithologists, and especially northern hemisphere ornithologists, have traditionally thought of migration as an annual return movement of populations between regular breeding and non-breeding grounds. Problems arise because selection does not ordinarily act on populations and because organisms of many taxa (including birds) are clearly migrants, but fail to undertake movements of the kind described. There are also extensive return movements that are not migratory. I propose that it is more useful to think of migration as a syndrome of behavioral and other traits that function together within individuals, and that such a syndrome provides a common ground across taxa from aphids to albatrosses. Large-scale return movements of populations are one outcome of the syndrome. Similar behavioral and physiological traits serve both to define migration and to provide a test for it. I use two insect (Hemipteran) examples to illustrate migratory syndromes and to demonstrate that, in many migrants, behavior and physiology correlate with life history and morphological traits to form syndromes at two levels. I then compare the two Hemipterans with migration in birds, butterflies, and fish to assess the question of whether there are migratory syndromes in common between these diverse migrants. Syndromes are more similar at the level of behavior than when morphology and life history traits are included. Recognizing syndromes leads to important evolutionary questions concerning migration strategies, trade-offs, the maintenance of genetic variance and the responses of migratory syndromes to both similar and different selective regimes.
Resumo:
Any planning process for health development ought to be based on a thorough understanding of the health needs of the population. This should be sufficiently comprehensive to include the causes of premature death and of disability, as well as the major risk factors that underlie disease and injury. To be truly useful to inform health-policy debates, such an assessment is needed across a large number of diseases, injuries and risk factors, in order to guide prioritization. The results of the original Global Burden of Disease Study and, particularly, those of its 2000-2002 update provide a conceptual and methodological framework to quantify and compare the health of populations using a summary measure of both mortality and disability: the disability-adjusted life-year (DALY). Globally, it appears that about 5 6 million deaths occur each year, 10. 5 million (almost all in poor countries) in children. Of the child deaths, about one-fifth result from perinatal causes such as birth asphyxia and birth trauma, and only slightly less from lower respiratory infections. Annually, diarrhoeal diseases kill over 1.5 million children, and malaria, measles and HIV/AIDS each claim between 500,000 and 800,000 children. HIV/AIDS is the fourth leading cause of death world-wide (2.9 million deaths) and the leading cause in Africa. The top three causes of death globally are ischaemic heart disease (7.2 million deaths), stroke (5.5 million) and lower respiratory diseases (3.9 million). Chronic obstructive lung diseases (COPD) cause almost as many deaths as HIV/AIDS (2.7 million). The leading causes of DALY, on the other hand, include causes that are common at young ages [perinatal conditions (7. 1 % of global DALY), lower respiratory infections (6.7%), and diarrhoeal diseases (4.7%)] as well as depression (4.1%). Ischaemic heart disease and stroke rank sixth and seventh, retrospectively, as causes of global disease burden, followed by road traffic accidents, malaria and tuberculosis. Projections to 2030 indicate that, although these major vascular diseases will remain leading causes of global disease burden, with HIV/AIDS the leading cause, diarrhoeal diseases and lower respiratory infections will be outranked by COPD, in part reflecting the projected increases in death and disability from tobacco use.