970 resultados para Genetic Variance-covariance Matrix
Resumo:
To obtain a better understanding of the associations among Borderline Personality Disorder (BPD), adult attachment patterns, impulsivity, and aggressiveness, we tested four competing models of these relationships: a) BPD is associated with the personality traits of impulsivity and aggressiveness, but adult attachment patterns predict neither BPD nor impulsive/aggressive features; b) adult attachment patterns are significant predictors of BPD but not of impulsive/aggressive traits, although these traits correlate with BPD; c) adult attachment patterns are significant predictors of impulsive and aggressive traits, which in turn predict BPD; and d) adult attachment patterns significantly predict both BPD and impulsive/aggressive traits. We assessed 466 consecutively admitted outpatients using the Structured Clinical Interview for DSM-IV Axis II Personality Disorders (V. 2.0), the Attachment Style Questionnaire, the Barratt Impulsiveness Scale-11, and the Aggression Questionnaire. Maximum likelihood structural equation modeling of the covariance matrix showed that model (c) was the best fitting model (chi(2) (21) = 31.67, p >.05, RMSEA = .023, test of close fit p >.85). This result indicates that adult attachment patterns act indirectly as risk factors for BPD because of their relationships with aggressive/impulsive personality traits.
Resumo:
Subsequent to the influential paper of [Chan, K.C., Karolyi, G.A., Longstaff, F.A., Sanders, A.B., 1992. An empirical comparison of alternative models of the short-term interest rate. Journal of Finance 47, 1209-1227], the generalised method of moments (GMM) has been a popular technique for estimation and inference relating to continuous-time models of the short-term interest rate. GMM has been widely employed to estimate model parameters and to assess the goodness-of-fit of competing short-rate specifications. The current paper conducts a series of simulation experiments to document the bias and precision of GMM estimates of short-rate parameters, as well as the size and power of [Hansen, L.P., 1982. Large sample properties of generalised method of moments estimators. Econometrica 50, 1029-1054], J-test of over-identifying restrictions. While the J-test appears to have appropriate size and good power in sample sizes commonly encountered in the short-rate literature, GMM estimates of the speed of mean reversion are shown to be severely biased. Consequently, it is dangerous to draw strong conclusions about the strength of mean reversion using GMM. In contrast, the parameter capturing the levels effect, which is important in differentiating between competing short-rate specifications, is estimated with little bias. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The rate of generation of fluctuations with respect to the scalar values conditioned on the mixture fraction, which significantly affects turbulent nonpremixed combustion processes, is examined. Simulation of the rate in a major mixing model is investigated and the derived equations can assist in selecting the model parameters so that the level of conditional fluctuations is better reproduced by the models. A more general formulation of the multiple mapping conditioning (MMC) model that distinguishes the reference and conditioning variables is suggested. This formulation can be viewed as a methodology of enforcing certain desired conditional properties onto conventional mixing models. Examples of constructing consistent MMC models with dissipation and velocity conditioning as well as of combining MMC with large eddy simulations (LES) are also provided. (c) 2005 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
Resumo:
Prenatal exposure to testosterone has been hypothesised to effect lateralization by influencing cell death in the foetal brain. Testosterone binds to the X chromosome linked androgen receptor, which contains a polymorphic polyglutamine CAG repeat, the length of which is positively correlated with testosterone levels in males, and negatively correlated in females. To determine whether the length of the androgen receptor mediates the effects of testosterone on laterality, we examined the association between the number of CAG repeats in the androgen receptor gene and handedness for writing. Association was tested by adding regression terms for the length of the androgen receptor alleles to a multi-factorial-threshold model of liability to left-handedness. In females we found the risk of left-handedness was greater in those with a greater number of repeats (p=0.04), this finding was replicated in a second independent sample of female twins (p=0.014). The length of the androgen receptor explained 6% of the total variance and 24% of the genetic variance in females. In males the risk of left-handedness was greater in those with fewer repeats (p=0.02), with variation in receptor length explaining 10% of the total variance and 24% of the genetic variance. Thus, consistent with Witelson's theory of testosterone action, in all three samples the likelihood of left handedness increased in those individuals with variants of the androgen receptor associated with lower testosterone levels.
Resumo:
The study of continuously varying, quantitative traits is important in evolutionary biology, agriculture, and medicine. Variation in such traits is attributable to many, possibly interacting, genes whose expression may be sensitive to the environment, which makes their dissection into underlying causative factors difficult. An important population parameter for quantitative traits is heritability, the proportion of total variance that is due to genetic factors. Response to artificial and natural selection and the degree of resemblance between relatives are all a function of this parameter. Following the classic paper by R. A. Fisher in 1918, the estimation of additive and dominance genetic variance and heritability in populations is based upon the expected proportion of genes shared between different types of relatives, and explicit, often controversial and untestable models of genetic and non-genetic causes of family resemblance. With genome-wide coverage of genetic markers it is now possible to estimate such parameters solely within families using the actual degree of identity-by-descent sharing between relatives. Using genome scans on 4,401 quasi-independent sib pairs of which 3,375 pairs had phenotypes, we estimated the heritability of height from empirical genome-wide identity-by-descent sharing, which varied from 0.374 to 0.617 (mean 0.498, standard deviation 0.036). The variance in identity-by-descent sharing per chromosome and per genome was consistent with theory. The maximum likelihood estimate of the heritability for height was 0.80 with no evidence for non-genetic causes of sib resemblance, consistent with results from independent twin and family studies but using an entirely separate source of information. Our application shows that it is feasible to estimate genetic variance solely from within- family segregation and provides an independent validation of previously untestable assumptions. Given sufficient data, our new paradigm will allow the estimation of genetic variation for disease susceptibility and quantitative traits that is free from confounding with non-genetic factors and will allow partitioning of genetic variation into additive and non-additive components.
Resumo:
We examined early social influences across stages of smoking within the context of a twin study using an environmental exposure specific to smoking: whether twins started smoking at the same time (simultaneous smoking initiation: SSI). We expected that SSI would be a good index of shared social influences on smoking initiation. Rates of SSI were indeed significantly higher in MZ twins and in twins who shared peers and classes, as well as in male twins. With the exception of regular smoking in females, we found no significant difference in estimates of genetic and environmental parameters between SSI and non-SSI pairs for any of the smoking measures that we examined (DSM-IV and Fagerstrom HSI measures of nicotine dependence; DSM-IV nicotine withdrawal; heavy smoking; and in males, regular smoking). For regular smoking in females, allowing for additional shared environmental influences associated with SSI only modestly reduced our estimates of additive genetic variance (56% vs. 68%). These results indicate the important social influences that may occur for smoking initiation do not appear to seriously bias estimates of genetic effects on later stages of smoking.
Resumo:
Ornithologists, and especially northern hemisphere ornithologists, have traditionally thought of migration as an annual return movement of populations between regular breeding and non-breeding grounds. Problems arise because selection does not ordinarily act on populations and because organisms of many taxa (including birds) are clearly migrants, but fail to undertake movements of the kind described. There are also extensive return movements that are not migratory. I propose that it is more useful to think of migration as a syndrome of behavioral and other traits that function together within individuals, and that such a syndrome provides a common ground across taxa from aphids to albatrosses. Large-scale return movements of populations are one outcome of the syndrome. Similar behavioral and physiological traits serve both to define migration and to provide a test for it. I use two insect (Hemipteran) examples to illustrate migratory syndromes and to demonstrate that, in many migrants, behavior and physiology correlate with life history and morphological traits to form syndromes at two levels. I then compare the two Hemipterans with migration in birds, butterflies, and fish to assess the question of whether there are migratory syndromes in common between these diverse migrants. Syndromes are more similar at the level of behavior than when morphology and life history traits are included. Recognizing syndromes leads to important evolutionary questions concerning migration strategies, trade-offs, the maintenance of genetic variance and the responses of migratory syndromes to both similar and different selective regimes.
Resumo:
Calibration of a groundwater model requires that hydraulic properties be estimated throughout a model domain. This generally constitutes an underdetermined inverse problem, for which a Solution can only be found when some kind of regularization device is included in the inversion process. Inclusion of regularization in the calibration process can be implicit, for example through the use of zones of constant parameter value, or explicit, for example through solution of a constrained minimization problem in which parameters are made to respect preferred values, or preferred relationships, to the degree necessary for a unique solution to be obtained. The cost of uniqueness is this: no matter which regularization methodology is employed, the inevitable consequence of its use is a loss of detail in the calibrated field. This, ill turn, can lead to erroneous predictions made by a model that is ostensibly well calibrated. Information made available as a by-product of the regularized inversion process allows the reasons for this loss of detail to be better understood. In particular, it is easily demonstrated that the estimated value for an hydraulic property at any point within a model domain is, in fact, a weighted average of the true hydraulic property over a much larger area. This averaging process causes loss of resolution in the estimated field. Where hydraulic conductivity is the hydraulic property being estimated, high averaging weights exist in areas that are strategically disposed with respect to measurement wells, while other areas may contribute very little to the estimated hydraulic conductivity at any point within the model domain, this possibly making the detection of hydraulic conductivity anomalies in these latter areas almost impossible. A study of the post-calibration parameter field covariance matrix allows further insights into the loss of system detail incurred through the calibration process to be gained. A comparison of pre- and post-calibration parameter covariance matrices shows that the latter often possess a much smaller spectral bandwidth than the former. It is also demonstrated that, as all inevitable consequence of the fact that a calibrated model cannot replicate every detail of the true system, model-to-measurement residuals can show a high degree of spatial correlation, a fact which must be taken into account when assessing these residuals either qualitatively, or quantitatively in the exploration of model predictive uncertainty. These principles are demonstrated using a synthetic case in which spatial parameter definition is based oil pilot points, and calibration is Implemented using both zones of piecewise constancy and constrained minimization regularization. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The net effect of sexual selection on nonsexual fitness is controversial. On one side, elaborate display traits and preferences for them can be costly, reducing the nonsexual fitness of individuals possessing them, as well as their offspring, In contrast, sexual selection may reinforce nonsexual fitness if an individual's attractiveness and quality are genetically correlated. According to recent models, such good-genes mate choice should increase both the extent and rate of adaptation. We evolved 12 replicate populations of Drosophila serrata in a powerful two-way factorial experimental design to test the separate and combined contributions of natural and sexual selection to adaptation to a novel larval food resource. Populations evolving in the presence of natural selection had significantly higher mean nonsexual fitness when measured over three generations (13-15) during the course of experimental evolution (16-23% increase). The effect of natural selection was even more substantial when measured in a standardized, monogamous mating environment at the end of the experiment (generation 16; 52% increase). In contrast, and despite strong sexual selection on display traits, there was no evidence from any of the four replicate fitness measures that sexual selection promoted adaptation. In addition, a comparison of fitness measures conducted under different mating environments demonstrated a significant direct cost of sexual selection to females, likely arising from some form of male-induced harm. Indirect benefits of sexual selection in promoting adaptation to this novel resource environment therefore appear to be absent in this species, despite prior evidence suggesting the operation of good-genes mate choice in their ancestral environment. How novel environments affect the operation of good-genes mate choice is a fundamental question for future sexual selection research.
Resumo:
This paper describes investigations into an optimal transmission scheme for a multiple input multiple output (MIMO) system operating in a Rician fading environment. The considerations are reduced to determining a covariance matrix of transmitted signals which maximizes the MIMO capacity under the condition that the receiver has perfect knowledge of the channel while the transmitter has the information about selected statistical quantities which are measured at the receiver. An optimal covariance matrix, which requires information of the Rice factor and the signal to noise ratio, is determined. The transmission scheme relying on the choice of the proposed covariance matrix outperforms the other transmission schemes which were reported earlier in the literature. The proposed scheme realizes an upper bound limit for the MIMO capacity under arbitrary Rician fading conditions. ©2005 IEEE
Resumo:
A recently proposed colour based tracking algorithm has been established to track objects in real circumstances [Zivkovic, Z., Krose, B. 2004. An EM-like algorithm for color-histogram-based object tracking. In: Proc, IEEE Conf. on Computer Vision and Pattern Recognition, pp. 798-803]. To improve the performance of this technique in complex scenes, in this paper we propose a new algorithm for optimally adapting the ellipse outlining the objects of interest. This paper presents a Lagrangian based method to integrate a regularising component into the covariance matrix to be computed. Technically, we intend to reduce the residuals between the estimated probability distribution and the expected one. We argue that, by doing this, the shape of the ellipse can be properly adapted in the tracking stage. Experimental results show that the proposed method has favourable performance in shape adaption and object localisation.
Resumo:
The principled statistical application of Gaussian random field models used in geostatistics has historically been limited to data sets of a small size. This limitation is imposed by the requirement to store and invert the covariance matrix of all the samples to obtain a predictive distribution at unsampled locations, or to use likelihood-based covariance estimation. Various ad hoc approaches to solve this problem have been adopted, such as selecting a neighborhood region and/or a small number of observations to use in the kriging process, but these have no sound theoretical basis and it is unclear what information is being lost. In this article, we present a Bayesian method for estimating the posterior mean and covariance structures of a Gaussian random field using a sequential estimation algorithm. By imposing sparsity in a well-defined framework, the algorithm retains a subset of “basis vectors” that best represent the “true” posterior Gaussian random field model in the relative entropy sense. This allows a principled treatment of Gaussian random field models on very large data sets. The method is particularly appropriate when the Gaussian random field model is regarded as a latent variable model, which may be nonlinearly related to the observations. We show the application of the sequential, sparse Bayesian estimation in Gaussian random field models and discuss its merits and drawbacks.
Resumo:
Recently within the machine learning and spatial statistics communities many papers have explored the potential of reduced rank representations of the covariance matrix, often referred to as projected or fixed rank approaches. In such methods the covariance function of the posterior process is represented by a reduced rank approximation which is chosen such that there is minimal information loss. In this paper a sequential framework for inference in such projected processes is presented, where the observations are considered one at a time. We introduce a C++ library for carrying out such projected, sequential estimation which adds several novel features. In particular we have incorporated the ability to use a generic observation operator, or sensor model, to permit data fusion. We can also cope with a range of observation error characteristics, including non-Gaussian observation errors. Inference for the variogram parameters is based on maximum likelihood estimation. We illustrate the projected sequential method in application to synthetic and real data sets. We discuss the software implementation and suggest possible future extensions.
Resumo:
With the ability to collect and store increasingly large datasets on modern computers comes the need to be able to process the data in a way that can be useful to a Geostatistician or application scientist. Although the storage requirements only scale linearly with the number of observations in the dataset, the computational complexity in terms of memory and speed, scale quadratically and cubically respectively for likelihood-based Geostatistics. Various methods have been proposed and are extensively used in an attempt to overcome these complexity issues. This thesis introduces a number of principled techniques for treating large datasets with an emphasis on three main areas: reduced complexity covariance matrices, sparsity in the covariance matrix and parallel algorithms for distributed computation. These techniques are presented individually, but it is also shown how they can be combined to produce techniques for further improving computational efficiency.
Resumo:
Exploratory analysis of data seeks to find common patterns to gain insights into the structure and distribution of the data. In geochemistry it is a valuable means to gain insights into the complicated processes making up a petroleum system. Typically linear visualisation methods like principal components analysis, linked plots, or brushing are used. These methods can not directly be employed when dealing with missing data and they struggle to capture global non-linear structures in the data, however they can do so locally. This thesis discusses a complementary approach based on a non-linear probabilistic model. The generative topographic mapping (GTM) enables the visualisation of the effects of very many variables on a single plot, which is able to incorporate more structure than a two dimensional principal components plot. The model can deal with uncertainty, missing data and allows for the exploration of the non-linear structure in the data. In this thesis a novel approach to initialise the GTM with arbitrary projections is developed. This makes it possible to combine GTM with algorithms like Isomap and fit complex non-linear structure like the Swiss-roll. Another novel extension is the incorporation of prior knowledge about the structure of the covariance matrix. This extension greatly enhances the modelling capabilities of the algorithm resulting in better fit to the data and better imputation capabilities for missing data. Additionally an extensive benchmark study of the missing data imputation capabilities of GTM is performed. Further a novel approach, based on missing data, will be introduced to benchmark the fit of probabilistic visualisation algorithms on unlabelled data. Finally the work is complemented by evaluating the algorithms on real-life datasets from geochemical projects.