998 resultados para Genes mitocondriais
Resumo:
Mosquito control with biological insecticides, such as Bacillus sp. toxins, has been used widely in many countries. However, rapid sedimentation away from the mosquito larvae feeding zone causes a low residual effect. In order to overcome this problem, it has been proposed to clone the Bacillus toxin genes in aquatic bacteria which are able to live in the upper part of the water column. Two strains of Asticcacaulis excentricus were chosen to introduce the B. sphaericus binary toxin gene and B. thuringiensis subsp. medellin cry11Bb gene cloned in suitable vectors. In feeding experiments with these aquatic bacteria, it was shown that Culex quinquefasciatus, Aedes aegypti, and Anopheles albimanus larvae were able to survive on a diet based on this wild bacterium. A. excentricus recombinant strains were able to express both genes, but the recombinant strain expressing the B. sphaericus binary toxin was toxic to mosquito larvae. Crude protease A. excentricus extracts did not degrade the Cry11Bb toxin. The flotability studies indicated that the recombinant A. excentricus strains remained in the upper part of the water column longer than the wild type Bacillus strains.
Resumo:
Lutzomyia longipalpis (Lutz & Neiva, 1912) (Diptera: Psychodidae: Phlebotominae) is a vector of visceral leishmaniasis in the Americas and it might represent a complex of sibling species. Reproductive isolation between closely related species often involves differences in courtship behaviour. cacophony (cac) and period (per) are two Drosophila genes that control features of the "lovesong" males produce during courtship that has been implicated in the sexual isolation between closely related species. We are using gene fragments from L. longipalpis' homologues of these two genes to study the speciation process in this putative species complex.
Resumo:
Odorous chemicals are detected by the mouse main olfactory epithelium (MOE) by about 1100 types of olfactory receptors (OR) expressed by olfactory sensory neurons (OSNs). Each mature OSN is thought to express only one allele of a single OR gene. Major impediments to understand the transcriptional control of OR gene expression are the lack of a proper characterization of OR transcription start sites (TSSs) and promoters, and of regulatory transcripts at OR loci. We have applied the nanoCAGE technology to profile the transcriptome and the active promoters in the MOE. nanoCAGE analysis revealed the map and architecture of promoters for 87.5% of the mouse OR genes, as well as the expression of many novel noncoding RNAs including antisense transcripts. We identified candidate transcription factors for OR gene expression and among them confirmed by chromatin immunoprecipitation the binding of TBP, EBF1 (OLF1), and MEF2A to OR promoters. Finally, we showed that a short genomic fragment flanking the major TSS of the OR gene Olfr160 (M72) can drive OSN-specific expression in transgenic mice.
Resumo:
La investigació entre les relacions dels nivells d’expressió dels gens aporta molta informació sobre els processos biològics i patològics. Mitjançant la tècnica de les microarrays es possibilita la investigació de les relacions d’expressió de milers de gens a la vegada. La finalitat d’aquest projecte es fent ús de l’aplicatiu web PCOPGene-Net, permetre la identificació dels gens per les relacions d’expressió no lineals que tenen amb la resta de gens i permetre també la identificació de les relacions d’expressió no lineals entre els gens d’una microarray.
Resumo:
A major question for the study of phenotypic evolution is whether intra- and interspecific diversity originates directly from genetic variation, or instead, as plastic responses to environmental influences initially, followed later by genetic change. In species with discrete alternative phenotypes, evolutionary sequences can be inferred from transitions between environmental and genetic phenotype control, and from losses of phenotypic alternatives. From the available evidence, sequences appear equally probable to start with genetic polymorphism as with polyphenism, with a possible dominance of one or the other for specific trait types. We argue in this review that to evaluate the prevalence of each route, an investigation of both genetic and environmental cues for phenotype determination in several related rather than in isolated species is required.
Resumo:
We simulated a meta-population with random dispersal among demes but local mating within demes to investigate conditions under which a dominant female-determining gene W, with no individual selection advantage, can invade and become fixed in females, changing the population from male to female heterogamety. Starting with one mutant W in a single deme, the interaction of sex ratio selection and random genetic drift causes W to be fixed among females more often than a comparable neutral mutation with no influence on sex determination, even when YY males have slightly reduced viability. Meta-population structure and interdeme selection can also favour the fixation of W. The reverse transition from female to male heterogamety can also occur with higher probability than for a comparable neutral mutation. These results help to explain the involvement of sex-determining genes in the evolution of sex chromosomes and in sexual selection and speciation.
Resumo:
The permeability-glycoprotein efflux-transporter encoded by the multidrug resistance 1 (ABCB1) gene and the cytochromes P450 3A4/5 encoded by the CYP3A4/5 genes are known to interact in the transport and metabolism of many drugs. Recent data have shown that the CYP3A5 genotypes influence blood pressure and that permeability-glycoprotein activity might influence the activity of the renin-angiotensin system. Hence, these 2 genes may contribute to blood pressure regulation in humans. We analyzed the association of variants of the ABCB1 and CYP3A5 genes with ambulatory blood pressure, plasma renin activity, plasma aldosterone, endogenous lithium clearance, and blood pressure response to treatment in 72 families (373 individuals; 55% women; mean age: 46 years) of East African descent. The ABCB1 and CYP3A5 genes interact with urinary sodium excretion in their effect on ambulatory blood pressure (daytime systolic: P=0.05; nighttime systolic and diastolic: P<0.01), suggesting a gene-gene-environment interaction. The combined action of these genes is also associated with postproximal tubular sodium reabsorption, plasma renin activity, plasma aldosterone, and with an altered blood pressure response to the angiotensin-converting enzyme inhibitor lisinopril (P<0.05). This is the first reported association of the ABCB1 gene with blood pressure in humans and demonstration that genes encoding for proteins metabolizing and transporting drugs and endogenous substrates contribute to blood pressure regulation.
Resumo:
To estimate the minimal gene set required to sustain bacterial life in nutritious conditions, we carried out a systematic inactivation of Bacillus subtilis genes. Among approximately 4,100 genes of the organism, only 192 were shown to be indispensable by this or previous work. Another 79 genes were predicted to be essential. The vast majority of essential genes were categorized in relatively few domains of cell metabolism, with about half involved in information processing, one-fifth involved in the synthesis of cell envelope and the determination of cell shape and division, and one-tenth related to cell energetics. Only 4% of essential genes encode unknown functions. Most essential genes are present throughout a wide range of Bacteria, and almost 70% can also be found in Archaea and Eucarya. However, essential genes related to cell envelope, shape, division, and respiration tend to be lost from bacteria with small genomes. Unexpectedly, most genes involved in the Embden-Meyerhof-Parnas pathway are essential. Identification of unknown and unexpected essential genes opens research avenues to better understanding of processes that sustain bacterial life.
Resumo:
An optimally cross-linked peptidoglycan requires both transglycosylation and transpeptidation, provided by class A and class B penicillin-binding proteins (PBPs). Streptococcus gordonii possesses three class A PBPs (PBPs 1A, 1B, and 2A) and two class B PBPs (PBPs 2B and 2X) that are important for penicillin resistance. High-level resistance (MIC, > or =2 microg/ml) requires mutations in class B PBPs. However, although unmutated, class A PBPs are critical to facilitate resistance development (M. Haenni and P. Moreillon, Antimicrob. Agents Chemother. 50:4053-4061, 2006). Thus, their overexpression might be important to sustain the drug. Here, we determined the promoter regions of the S. gordonii PBPs and compared them to those of other streptococci. The extended -10 box was highly conserved and complied with a sigma(A)-type promoter consensus sequence. In contrast, the -35 box was poorly conserved, leaving the possibility of differential PBP regulation. Gene expression in a penicillin-susceptible parent (MIC, 0.008 microg/ml) and a high-level-resistant mutant (MIC, 2 microg/ml) was monitored using luciferase fusions. In the absence of penicillin, all PBPs were constitutively expressed, but their expression was globally increased (1.5 to 2 times) in the resistant mutant. In the presence of penicillin, class A PBPs were specifically overexpressed both in the parent (PBP 2A) and in the resistant mutant (PBPs 1A and 2A). By increasing transglycosylation, class A PBPs could promote peptidoglycan stability when transpeptidase is inhibited by penicillin. Since penicillin-related induction of class A PBPs occurred in both susceptible and resistant cells, such a mutation-independent facilitating mechanism could be operative at each step of resistance development.
Resumo:
PURPOSE: The purpose of this work was to study the influence of cell differentiation on the mRNA expression of transporters and channels in Caco-2 cells and to assess Caco-2 cells as a model for carrier-mediated drug transport in the intestines. METHOD: Gene mRNA expression was measured using a custom-designed microarray chip with 750 deoxyoligonucleotide probes (70mers). Each oligomer was printed four times on poly-lysine-coated glass slides. Expression profiles were expressed as ratio values between fluorescence intensities of Cy3 and Cy5 dye-labeled cDNA derived from poly(A) + RNA samples of Caco-2 cells and total RNA of human intestines. RESULTS: Significant differences in the mRNA expression profile of transporters and channels were observed upon differentiation of Caco-2 cells from 5 days to 2 weeks in culture, including changes for MAT8, S-protein, and Nramp2. Comparing Caco-2 cells of different passage number revealed few changes in mRNAs except for GLUT3, which was down-regulated 2.4-fold within 13 passage numbers. Caco-2 cells had a similar expression profile when either cultured in flasks or on filters but differed more strongly from human small and large intestine, regardless of the differentiation state of Caco-2 cells. Expression of several genes highly transcribed in small or large intestines differed fourfold or more in Caco-2 cells. CONCLUSIONS: Although Caco-2 cells have proven a suitable model for studying carrier-mediated transport in human intestines, the expression of specific transporter and ion channel genes may differ substantially.
Resumo:
The development of targeted treatment strategies adapted to individual patients requires identification of the different tumor classes according to their biology and prognosis. We focus here on the molecular aspects underlying these differences, in terms of sets of genes that control pathogenesis of the different subtypes of astrocytic glioma. By performing cDNA-array analysis of 53 patient biopsies, comprising low-grade astrocytoma, secondary glioblastoma (respective recurrent high-grade tumors), and newly diagnosed primary glioblastoma, we demonstrate that human gliomas can be differentiated according to their gene expression. We found that low-grade astrocytoma have the most specific and similar expression profiles, whereas primary glioblastoma exhibit much larger variation between tumors. Secondary glioblastoma display features of both other groups. We identified several sets of genes with relatively highly correlated expression within groups that: (a). can be associated with specific biological functions; and (b). effectively differentiate tumor class. One prominent gene cluster discriminating primary versus nonprimary glioblastoma comprises mostly genes involved in angiogenesis, including VEGF fms-related tyrosine kinase 1 but also IGFBP2, that has not yet been directly linked to angiogenesis. In situ hybridization demonstrating coexpression of IGFBP2 and VEGF in pseudopalisading cells surrounding tumor necrosis provided further evidence for a possible involvement of IGFBP2 in angiogenesis. The separating groups of genes were found by the unsupervised coupled two-way clustering method, and their classification power was validated by a supervised construction of a nearly perfect glioma classifier.
Resumo:
To establish the relationships of the lizard- and mammal-infecting Leishmania, we characterized the intergenic spacer region of ribosomal RNA genes from L. tarentolae and L. hoogstraali. The organization of these regions is similar to those of other eukaryotes. The intergenic spacer region was approximately 4 kb in L. tarentolae and 5.5 kb in L. hoogstraali. The size difference was due to a greater number of 63-bp repetitive elements in the latter species. This region also contained another element, repeated twice, that had an inverted octanucleotide with the potential to form a stem-loop structure that could be involved in transcription termination or processing events. The ribosomal RNA gene localization showed a distinct pattern with one chromosomal band (2.2 Mb) for L. tarentolae and two (1.5 and 1.3 Mb) for L. hoogstraali. The study also showed sequence differences in the external transcribed region that could be used to distinguish lizard Leishmania from the mammalian Leishmania. The intergenic spacer region structure features found among Leishmania species indicated that lizard and mammalian Leishmania are closely related and support the inclusion of lizard-infecting species into the subgenus Sauroleishmania proposed by Saf'janova in 1982.
Resumo:
The study of the Schistosoma mansoni genome, one of the etiologic agents of human schistosomiasis, is essential for a better understanding of the biology and development of this parasite. In order to get an overview of all S. mansoni catalogued gene sequences, we performed a clustering analysis of the parasite mRNA sequences available in public databases. This was made using softwares PHRAP and CAP3. The consensus sequences, generated after the alignment of cluster constituent sequences, allowed the identification by database homology searches of the most expressed genes in the worm. We analyzed these genes and looked for a correlation between their high expression and parasite metabolism and biology. We observed that the majority of these genes is related to the maintenance of basic cell functions, encoding genes whose products are related to the cytoskeleton, intracellular transport and energy metabolism. Evidences are presented here that genes for aerobic energy metabolism are expressed in all the developmental stages analyzed. Some of the most expressed genes could not be identified by homology searches and may have some specific functions in the parasite.