996 resultados para Gaussian beams
Resumo:
In this paper, we present a spectral finite element model (SFEM) using an efficient and accurate layerwise (zigzag) theory, which is applicable for wave propagation analysis of highly inhomogeneous laminated composite and sandwich beams. The theory assumes a layerwise linear variation superimposed with a global third-order variation across the thickness for the axial displacement. The conditions of zero transverse shear stress at the top and bottom and its continuity at the layer interfaces are subsequently enforced to make the number of primary unknowns independent of the number of layers, thereby making the theory as efficient as the first-order shear deformation theory (FSDT). The spectral element developed is validated by comparing the present results with those available in the literature. A comparison of the natural frequencies of simply supported composite and sandwich beams obtained by the present spectral element with the exact two-dimensional elasticity and FSDT solutions reveals that the FSDT yields highly inaccurate results for the inhomogeneous sandwich beams and thick composite beams, whereas the present element based on the zigzag theory agrees very well with the exact elasticity solution for both thick and thin, composite and sandwich beams. A significant deviation in the dispersion relations obtained using the accurate zigzag theory and the FSDT is also observed for composite beams at high frequencies. It is shown that the pure shear rotation mode remains always evanescent, contrary to what has been reported earlier. The SFEM is subsequently used to study wavenumber dispersion, free vibration and wave propagation time history in soft-core sandwich beams with composite faces for the first time in the literature. (C) 2014 Elsevier Ltd. All rights reserved.
Three-dimensional localization of multiple acoustic sources in shallow ocean with non-Gaussian noise
Resumo:
In this paper, a low-complexity algorithm SAGE-USL is presented for 3-dimensional (3-D) localization of multiple acoustic sources in a shallow ocean with non-Gaussian ambient noise, using a vertical and a horizontal linear array of sensors. In the proposed method, noise is modeled as a Gaussian mixture. Initial estimates of the unknown parameters (source coordinates, signal waveforms and noise parameters) are obtained by known/conventional methods, and a generalized expectation maximization algorithm is used to update the initial estimates iteratively. Simulation results indicate that convergence is reached in a small number of (<= 10) iterations. Initialization requires one 2-D search and one 1-D search, and the iterative updates require a sequence of 1-D searches. Therefore the computational complexity of the SAGE-USL algorithm is lower than that of conventional techniques such as 3-D MUSIC by several orders of magnitude. We also derive the Cramer-Rao Bound (CRB) for 3-D localization of multiple sources in a range-independent ocean. Simulation results are presented to show that the root-mean-square localization errors of SAGE-USL are close to the corresponding CRBs and significantly lower than those of 3-D MUSIC. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
One of the most-studied signals for physics beyond the standard model in the production of gauge bosons in electron-positron collisions is due to the anomalous triple gauge boson couplings in the Z(gamma) final state. In this work, we study the implications of this at the ILC with polarized beams for signals that go beyond traditional anomalous triple neutral gauge boson couplings. Here we report a dimension-8 CP-conserving Z(gamma)Z vertex that has not found mention in the literature. We carry out a systematic study of the anomalous couplings in general terms and arrive at a classification. We then obtain linear-order distributions with and without CP violation. Furthermore, we place the study in the context of general BSM interactions represented by e(+)e(-)Z(gamma) contact interactions. We set up a correspondence between the triple gauge boson couplings and the four-point contact interactions. We also present sensitivities on these anomalous couplings, which will be achievable at the ILC with realistic polarization and luminosity.
Resumo:
Smoothed functional (SF) schemes for gradient estimation are known to be efficient in stochastic optimization algorithms, especially when the objective is to improve the performance of a stochastic system However, the performance of these methods depends on several parameters, such as the choice of a suitable smoothing kernel. Different kernels have been studied in the literature, which include Gaussian, Cauchy, and uniform distributions, among others. This article studies a new class of kernels based on the q-Gaussian distribution, which has gained popularity in statistical physics over the last decade. Though the importance of this family of distributions is attributed to its ability to generalize the Gaussian distribution, we observe that this class encompasses almost all existing smoothing kernels. This motivates us to study SF schemes for gradient estimation using the q-Gaussian distribution. Using the derived gradient estimates, we propose two-timescale algorithms for optimization of a stochastic objective function in a constrained setting with a projected gradient search approach. We prove the convergence of our algorithms to the set of stationary points of an associated ODE. We also demonstrate their performance numerically through simulations on a queuing model.
On Precoding for Constant K-User MIMO Gaussian Interference Channel With Finite Constellation Inputs
Resumo:
This paper considers linear precoding for the constant channel-coefficient K-user MIMO Gaussian interference channel (MIMO GIC) where each transmitter-i (Tx-i) requires the sending of d(i) independent complex symbols per channel use that take values from fixed finite constellations with uniform distribution to receiver-i (Rx-i) for i = 1, 2, ..., K. We define the maximum rate achieved by Tx-i using any linear precoder as the signal-to-noise ratio (SNR) tends to infinity when the interference channel coefficients are zero to be the constellation constrained saturation capacity (CCSC) for Tx-i. We derive a high-SNR approximation for the rate achieved by Tx-i when interference is treated as noise and this rate is given by the mutual information between Tx-i and Rx-i, denoted as I(X) under bar (i); (Y) under bar (i)]. A set of necessary and sufficient conditions on the precoders under which I(X) under bar (i); (Y) under bar (i)] tends to CCSC for Tx-i is derived. Interestingly, the precoders designed for interference alignment (IA) satisfy these necessary and sufficient conditions. Furthermore, we propose gradient-ascentbased algorithms to optimize the sum rate achieved by precoding with finite constellation inputs and treating interference as noise. A simulation study using the proposed algorithms for a three-user MIMO GIC with two antennas at each node with d(i) = 1 for all i and with BPSK and QPSK inputs shows more than 0.1-b/s/Hz gain in the ergodic sum rate over that yielded by precoders obtained from some known IA algorithms at moderate SNRs.
Resumo:
In this paper, the free vibration of a rotating Euler-Bernoulli beam is studied using an inverse problem approach. We assume a polynomial mode shape function for a particular mode, which satisfies all the four boundary conditions of a rotating beam, along with the internal nodes. Using this assumed mode shape function, we determine the linear mass and fifth order stiffness variations of the beam which are typical of helicopter blades. Thus, it is found that an infinite number of such beams exist whose fourth order governing differential equation possess a closed form solution for certain polynomial variations of the mass and stiffness, for both cantilever and pinned-free boundary conditions corresponding to hingeless and articulated rotors, respectively. A detailed study is conducted for the first, second and third modes of a rotating cantilever beam and the first and second elastic modes of a rotating pinned-free beam, and on how to pre-select the internal nodes such that the closed-form solutions exist for these cases. The derived results can be used as benchmark solutions for the validation of rotating beam numerical methods and may also guide nodal tailoring. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
We present the first q-Gaussian smoothed functional (SF) estimator of the Hessian and the first Newton-based stochastic optimization algorithm that estimates both the Hessian and the gradient of the objective function using q-Gaussian perturbations. Our algorithm requires only two system simulations (regardless of the parameter dimension) and estimates both the gradient and the Hessian at each update epoch using these. We also present a proof of convergence of the proposed algorithm. In a related recent work (Ghoshdastidar, Dukkipati, & Bhatnagar, 2014), we presented gradient SF algorithms based on the q-Gaussian perturbations. Our work extends prior work on SF algorithms by generalizing the class of perturbation distributions as most distributions reported in the literature for which SF algorithms are known to work turn out to be special cases of the q-Gaussian distribution. Besides studying the convergence properties of our algorithm analytically, we also show the results of numerical simulations on a model of a queuing network, that illustrate the significance of the proposed method. In particular, we observe that our algorithm performs better in most cases, over a wide range of q-values, in comparison to Newton SF algorithms with the Gaussian and Cauchy perturbations, as well as the gradient q-Gaussian SF algorithms. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, we study the inverse mode shape problem for an Euler-Bernoulli beam, using an analytical approach. The mass and stiffness variations are determined for a beam, having various boundary conditions, which has a prescribed polynomial second mode shape with an internal node. It is found that physically feasible rectangular cross-section beams which satisfy the inverse problem exist for a variety of boundary conditions. The effect of the location of the internal node on the mass and stiffness variations and on the deflection of the beam is studied. The derived functions are used to verify the p-version finite element code, for the cantilever boundary condition. The paper also presents the bounds on the location of the internal node, for a valid mass and stiffness variation, for any given boundary condition. The derived property variations, corresponding to a given mode shape and boundary condition, also provides a simple closed-form solution for a class of non-uniform Euler-Bernoulli beams. These closed-form solutions can also be used to check optimization algorithms proposed for modal tailoring.
Resumo:
Grating Compression Transform (GCT) is a two-dimensional analysis of speech signal which has been shown to be effective in multi-pitch tracking in speech mixtures. Multi-pitch tracking methods using GCT apply Kalman filter framework to obtain pitch tracks which requires training of the filter parameters using true pitch tracks. We propose an unsupervised method for obtaining multiple pitch tracks. In the proposed method, multiple pitch tracks are modeled using time-varying means of a Gaussian mixture model (GMM), referred to as TVGMM. The TVGMM parameters are estimated using multiple pitch values at each frame in a given utterance obtained from different patches of the spectrogram using GCT. We evaluate the performance of the proposed method on all voiced speech mixtures as well as random speech mixtures having well separated and close pitch tracks. TVGMM achieves multi-pitch tracking with 51% and 53% multi-pitch estimates having error <= 20% for random mixtures and all-voiced mixtures respectively. TVGMM also results in lower root mean squared error in pitch track estimation compared to that by Kalman filtering.
Resumo:
GaN nanorods were grown by plasma assisted molecular beam epitaxy on intrinsic Si (111) substrates which were characterized by powder X-ray diffraction, field emission scanning electron microscopy, and photoluminescence. The current-voltage characteristics of the GaN nanorods on Si (111) heterojunction were obtained from 138 to 493K which showed the inverted rectification behavior. The I-V characteristics were analyzed in terms of thermionic emission model. The temperature variation of the apparent barrier height and ideality factor along with the non-linearity of the activation energy plot indicated the presence of lateral inhomogeneities in the barrier height. The observed two temperature regimes in Richardson's plot could be well explained by assuming two separate Gaussian distribution of the barrier heights. (C) 2014 AIP Publishing LLC.
Resumo:
We report on the effect of thin silicon nitride (Si3N4) induced tensile stress on the structural release of 200nm thick SOI beam, in the surface micro-machining process. A thin (20nm / 100nm) LPCVD grown Si3N4 is shown to significantly enhance the yield of released beam in wet release technique. This is especially prominent with increase in beam length, where the beams have higher tendency for stiction. We attribute this yield enhancement to the nitride induced tensile stress, as verified by buckling tendency and resonance frequency data obtained from optical profilometry and laser doppler vibrometry.
Resumo:
In this paper, we derive analytical expressions for mass and stiffness functions of transversely vibrating clamped-clamped non-uniform beams under no axial loads, which are isospectral to a given uniform axially loaded beam. Examples of such axially loaded beams are beam columns (compressive axial load) and piano strings (tensile axial load). The Barcilon-Gottlieb transformation is invoked to transform the non-uniform beam equation into the axially loaded uniform beam equation. The coupled ODEs involved in this transformation are solved for two specific cases (pq (z) = k (0) and q = q (0)), and analytical solutions for mass and stiffness are obtained. Examples of beams having a rectangular cross section are shown as a practical application of the analysis. Some non-uniform beams are found whose frequencies are known exactly since uniform axially loaded beams with clamped ends have closed-form solutions. In addition, we show that the tension required in a stiff piano string with hinged ends can be adjusted by changing the mass and stiffness functions of a stiff string, retaining its natural frequencies.
Resumo:
We performed Gaussian network model based normal mode analysis of 3-dimensional structures of multiple active and inactive forms of protein kinases. In 14 different kinases, a more number of residues (1095) show higher structural fluctuations in inactive states than those in active states (525), suggesting that, in general, mobility of inactive states is higher than active states. This statistically significant difference is consistent with higher crystallographic B-factors and conformational energies for inactive than active states, suggesting lower stability of inactive forms. Only a small number of inactive conformations with the DFG motif in the ``in'' state were found to have fluctuation magnitudes comparable to the active conformation. Therefore our study reports for the first time, intrinsic higher structural fluctuation for almost all inactive conformations compared to the active forms. Regions with higher fluctuations in the inactive states are often localized to the aC-helix, aG-helix and activation loop which are involved in the regulation and/or in structural transitions between active and inactive states. Further analysis of 476 kinase structures involved in interactions with another domain/protein showed that many of the regions with higher inactive-state fluctuation correspond to contact interfaces. We also performed extensive GNM analysis of (i) insulin receptor kinase bound to another protein and (ii) holo and apo forms of active and inactive conformations followed by multi-factor analysis of variance. We conclude that binding of small molecules or other domains/proteins reduce the extent of fluctuation irrespective of active or inactive forms. Finally, we show that the perceived fluctuations serve as a useful input to predict the functional state of a kinase.
Resumo:
An asymptotically-exact methodology is presented for obtaining the cross-sectional stiffness matrix of a pre-twisted moderately-thick beam having rectangular cross sections and made of transversely isotropic materials. The anisotropic beam is modeled from 3-D elasticity, without any further assumptions. The beam is allowed to have large displacements and rotations, but small strain is assumed. The strain energy of the beam is computed making use of the constitutive law and the kinematical relations derived with the inclusion of geometrical nonlinearities and initial twist. Large displacements and rotations are allowed, but small strain is assumed. The Variational Asymptotic Method is used to minimize the energy functional, thereby reducing the cross section to a point on the reference line with appropriate properties, yielding a 1-D constitutive law. In this method as applied herein, the 2-D cross-sectional analysis is performed asymptotically by taking advantage of a material small parameter and two geometric small parameters. 3-D strain components are derived using kinematics and arranged as orders of the small parameters. Warping functions are obtained by the minimization of strain energy subject to certain set of constraints that renders the 1-D strain measures well-defined. Closed-form expressions are derived for the 3-D non-linear warping and stress fields. The model is capable of predicting interlaminar and transverse shear stresses accurately up to first order.
Resumo:
The cross-sectional stiffness matrix is derived for a pre-twisted, moderately thick beam made of transversely isotropic materials and having rectangular cross sections. An asymptotically-exact methodology is used to model the anisotropic beam from 3-D elasticity, without any further assumptions. The beam is allowed to have large displacements and rotations, but small strain is assumed. The strain energy is computed making use of the beam constitutive law and kinematical relations derived with the inclusion of geometrical nonlinearities and an initial twist. The energy functional is minimized making use of the Variational Asymptotic Method (VAM), thereby reducing the cross section to a point on the beam reference line with appropriate properties, forming a 1-D constitutive law. VAM is a mathematical technique employed in the current problem to rigorously split the 3-D analysis of beams into two: a 2-D analysis over the beam cross-sectional domain, which provides a compact semi-analytical form of the properties of the cross sections, and a nonlinear 1-D analysis of the beam reference curve. In this method, as applied herein, the cross-sectional analysis is performed asymptotically by taking advantage of a material small parameter and two geometric small parameters. 3-D strain components are derived using kinematics and arranged in orders of the small parameters. Closed-form expressions are derived for the 3-D non-linear warping and stress fields. Warping functions are obtained by the minimization of strain energy subject to certain set of constraints that render the 1-D strain measures well-defined. The zeroth-order 3-D warping field thus yielded is then used to integrate the 3-D strain energy density over the cross section, resulting in the 1-D strain energy density, which in turn helps identify the corresponding cross-sectional stiffness matrix. The model is capable of predicting interlaminar and transverse shear stresses accurately up to first order.