933 resultados para Gas manufacture and works
Resumo:
The permeation behavior of water vapor, H-2, CO2, O-2, N-2, and CH4 gases in a series of novel poly(aryl ether sulfone)s has been examined over a temperature range of 30-100 degreesC. These polymers include four alkyl-substituted cardo poly(aryl ether sulfone)s and four intermolecular interaction enhanced poly(aryl ether sulfone)s. Their water vapor and gas transport properties were compared to the unmodified cardo poly(aryl ether sulfone) (PES-C). It was found that the bulky alkyl substituents on the phenylene rings were advantageous for gas permeability, while the intermolecular hydrogen bonds and ionic bonds resulted in a considerable increase in gas permselectivity. The causes of the trend were interpreted according to free volume, interchain distance, and glass transition temperature, together with the respective contribution of gas solubility and diffusivity to the overall permeability. Of interest was the observation that IMPES-L, which simultaneously bears bulky isopropyl substituent and pendant carboxylic groups, displayed 377% higher O-2 permeability and 5.3% higher O-2/N-2 permselectivity than PES-C. Furthermore, sodium salt form PES-Na+ and potassium salt form PES-K+ exhibited water vapor permeability twice as high as PES-C and H2O/N-2 selectivity in 10(5) order of magnitude.
Resumo:
Gas permeability coefficients of a series of aromatic polyimides, which were prepared from oxydiphthalic dianhydride (ODPA) with various aromatic diamines, with respect to H-2, CO2, O-2, N-2, and CH4 were measured under 10 atm and in the temperature range from 30 to 150 degrees C. A significant change in gas permeability and permselectivity resulting from systematic variation of the chemical structure of the polyimides was found. Among the polyimides which were prepared from phenylenediamine and its derivatives as well as bridged diamines without side groups on the benzene rings of the diamine residues, the increase of the gas permeability is accompanied by a decrease of the permselectivity. However, both the gas permeability and the permselectivity of the polyimides which were prepared from bridged diamines with methyl or methoxy groups on the benzene rings of the diamine residues simultaneously increase.
Resumo:
The gas permeability and permselectivity properties were investigated of polyimides, prepared from 3,3',4,4'- and 2,2',3,3'-thiaphthalic dianhydride (p-TDPA and m-TDPA, respectively), or 1,4-bis(3,4-dicarboxyphenoxy)- and 1,4-bis(2,3-dicarboxyphenoxy) benzene dianhydride (p-HQDPA and m-HQDPA, respectively), and 4,4-oxydianiline. The polyimides prepared from meta-dianhydrides, which have lower chain-segment packing density, possess higher permeability and lower permselectivity than those prepared from para-dianhydrides. Copyright (C) 1996 Elsevier Science Ltd.
Resumo:
Interpretation of high-resolution two-dimensional (2D) and three-dimensional (3D) seismic data collected in the Qiongdongnan Basin, South China Sea reveals the presence of polygonal faults, pockmarks, gas chimneys and slope failure in strata of Pliocene and younger age. The gas chimneys are characterized by low-amplitude reflections, acoustic turbidity and low P-wave velocity indicating fluid expulsion pathways. Coherence time slices show that the polygonal faults are restricted to sediments with moderate-amplitude, continuous reflections. Gas hydrates are identified in seismic data by the presence of bottom simulating reflectors (BSRs), which have high amplitude, reverse polarity and are subparallel to seafloor. Mud diapirism and mounded structures have variable geometry and a great diversity regarding the origin of the fluid and the parent beds. The gas chimneys, mud diapirism, polygonal faults and a seismic facies-change facilitate the upward migration of thermogenic fluids from underlying sediments. Fluids can be temporarily trapped below the gas hydrate stability zone, but fluid advection may cause gas hydrate dissociation and affect the thickness of gas hydrate zone. The fluid accumulation leads to the generation of excess pore fluids that release along faults, forming pockmarks and mud volcanoes on the seafloor. These features are indicators of fluid flow in a tectonically-quiescent sequence, Qiongdongnan Basin. Geofluids (2010) 10, 351-368.
Resumo:
Directional drilling and hydraulic-fracturing technologies are dramatically increasing natural-gas extraction. In aquifers overlying the Marcellus and Utica shale formations of northeastern Pennsylvania and upstate New York, we document systematic evidence for methane contamination of drinking water associated with shale-gas extraction. In active gas-extraction areas (one or more gas wells within 1 km), average and maximum methane concentrations in drinking-water wells increased with proximity to the nearest gas well and were 19.2 and 64 mg CH(4) L(-1) (n = 26), a potential explosion hazard; in contrast, dissolved methane samples in neighboring nonextraction sites (no gas wells within 1 km) within similar geologic formations and hydrogeologic regimes averaged only 1.1 mg L(-1) (P < 0.05; n = 34). Average δ(13)C-CH(4) values of dissolved methane in shallow groundwater were significantly less negative for active than for nonactive sites (-37 ± 7‰ and -54 ± 11‰, respectively; P < 0.0001). These δ(13)C-CH(4) data, coupled with the ratios of methane-to-higher-chain hydrocarbons, and δ(2)H-CH(4) values, are consistent with deeper thermogenic methane sources such as the Marcellus and Utica shales at the active sites and matched gas geochemistry from gas wells nearby. In contrast, lower-concentration samples from shallow groundwater at nonactive sites had isotopic signatures reflecting a more biogenic or mixed biogenic/thermogenic methane source. We found no evidence for contamination of drinking-water samples with deep saline brines or fracturing fluids. We conclude that greater stewardship, data, and-possibly-regulation are needed to ensure the sustainable future of shale-gas extraction and to improve public confidence in its use.
Resumo:
The music of women composers often comprises only a small percentage of flutists‘ repertoire, yet there are actually many active women composers, many of whom have written for the flute. The aim of this dissertation is to chronicle a selection of works by several American women composers that have contributed to accessible flute repertoire. For the purpose of this dissertation, accessibility is described by the following parameters: works that limit the use of extended techniques, works that are suitable for performers from high school through a reasonably advanced level, works that are likely to elicit emotionally musical communication from the performer to the listener, and works that are reasonably available through music stores or outlets on the Internet that have a fairly comprehensive reach to the general public. My subjective judgment also played a role in the final selection of the 25 works included as part of this dissertation, and performed on three musically well-balanced recitals. A variety of resources were consulted for the repertoire, including Boenke‘s Flute Music by Women Composers: An Annotated Catalog, and the catalogs of publishers such as Arsis Press and Hildegard Publishing, both of which specialize in the music of women composers. The works performed and discussed are the following: Adrienne Albert – Sunswept; Marion Bauer – Prelude and Fugue, Op. 43.; Marilyn Bliss – Lament; Ann Callaway – Updraft; Ruth Crawford – Diaphonic Suite; Emma Lou Diemer – Sonata; Vivian Fine – Emily’s Images; Cynthia Folio – Arca Sacra; Nancy Galbraith – Atacama; Lita Grier – Sonata; Jennifer Higdon – The Jeffrey Mode; Edie Hill – This Floating World; Katherine Hoover – Masks; Mary Howe – Interlude between Two Pieces; Laura Kaminsky – Duo; Libby Larsen – Aubade; Alex Shapiro – Shiny Kiss; Judith Shatin – Coursing Through the Still Green; Faye-Ellen Silverman – Taming the Furies; Augusta Read Thomas – Euterpe’s Caprice; Joan Tower – Valentine Trills; Ludmila Ulehla – Capriccio; Elizabeth Vercoe – Kleemation; Gwyneth Walker – Sonata; and Judith Lang Zaimont – ‘Bubble-Up’ Rag. All of these works are worthy alternatives to the more frequently played flute repertoire, and they serve as a good starting point for anyone interested i n exploring the works of women composers.
Resumo:
The performance optimisation of automotive catalysts has been the focus of a great deal of research for many years as the automotive industry has endeavored to reduce the emission of toxic and pollutant gases generated from internal combustion engines. Just as the emissions from diesel and gasoline combustion vary so do the emissions from combustion of alternative fuels such as ethanol; the variation is in both quantity and chemical composition. In particular, when ethanol is contained in the fuel, ethanol and acetaldehyde are present in the exhaust gas stream and these are two compounds which the catalytic converter has not traditionally been designed to manage. The aim of the study outlined in this paper was to assess the performance of various catalyst formulations when subjected to a representative ethanol exhaust gas mixture. Three automotive catalytic converter formulations were tested including a fully Pt sample, a PdRh three-way catalyst sample and a fully Pd sample. Initially the samples were tested using single component hydrocarbon light-off tests followed by a set of tests with carbon monoxide included as an inlet gas to observe its effect on each individual hydrocarbon oxidation. Finally, each formulation was tested using a full E85 exhaust gas mixture. The study was carried out using a synthetic gas reactor along with FTIR and FID exhaust gas analysers. All formulations showed selectivity toward acetaldehyde formation from ethanol dehydrogenation which resulted in negative acetaldehyde conversion across each of the samples during the mixture tests. The fully Pt sample was the most detrimentally affected by the introduction of carbon monoxide into the gas feed. The Pd and PdRh samples exhibited a tendency toward acetaldehyde decomposition resulting in methane and carbon monoxide formation. The Pt sample did not form methane but did form ethylene as a result of ethanol dehydration.
Resumo:
Metal organic frameworks (MOFs) are among the most exciting materials discovered recently, attracting particular attention for their gas-adsorption and -storage properties. Certain MOFs show considerable structural flexibility in response to various stimuli. Although there are several examples of 'breathing' MOFs, in which structural changes occur without any bond breaking, examples of transformations in which several bonds are broken and made are much rarer. In this paper we demonstrate how a flexible MOF, Cu-2(OH)(C8H3O7S)(H2O)center dot 2H(2)O, can be synthesized by careful choice of the organic linker ligand. The flexibility can be controlled by addition of a supplementary coordinating molecule, which increases the thermal stability of the solid sufficiently for direct imaging with electron microscopy to be possible. We also demonstrate that the MOF shows unprecedented low-pressure selectivity towards nitric oxide through a coordination-driven gating mechanism. The chemical control over these behaviours offers new possibilities for the synthesis of MOFs with unusual and potentially exploitable properties.
Resumo:
This paper reports the detailed description and validation of a fully automated, computer controlled analytical method to spatially probe the gas composition and thermal characteristics in packed bed systems. As an exemplar, we have examined a heterogeneously catalysed gas phase reaction within the bed of a powdered oxide supported metal catalyst. The design of the gas sampling and the temperature recording systems are disclosed. A stationary capillary with holes drilled in its wall and a moveable reactor coupled with a mass spectrometer are used to enable sampling and analysis. This method has been designed to limit the invasiveness of the probe on the reactor by using the smallest combination of thermocouple and capillary which can be employed practically. An 80 mu m (O.D.) thermocouple has been inserted in a 250 mu m (O.D.) capillary. The thermocouple is aligned with the sampling holes to enable both the gas composition and temperature profiles to be simultaneously measured at equivalent spatially resolved positions. This analysis technique has been validated by studying CO oxidation over a 1% Pt/Al2O3 catalyst and the spatial resolution profiles of chemical species concentrations and temperature as a function of the axial position within the catalyst bed are reported.
Resumo:
Automotive manufacturers require improved part load engine performance to further improve fuel economy. For a swing vane VGS (Variable Geometry Stator) turbine this means a more closed stator vane, to deal with the low MFRs (Mass Flow Rates), high PRs (Pressure Ratios) and low rotor rotational speeds. During these conditions the turbine is operating at low velocity ratios. As more energy is available at high pressure ratios and during lower turbocharger rotational speeds, a turbine which is efficient at these conditions is desirable. Another key aspect for automotive manufacturers is engine responsiveness. High inertia designs result in “turbo lag” which means an increased time before the target boost pressure is reached. Therefore, designs with improved performance at low velocity ratios, reduced inertia or an increased swallowing capacity are the current targets for turbocharger manufacturers.
To try to meet these design targets a CFD (Computational Fluid Dynamics) study was performed on a turbine wheel using splitter blades. A number of parameters were investigated. These included splitter blade merdional length, blade number and blade angle distribution.
The numerical study was performed on a scaled automotive VGS. Three different stator vane positions have been analysed. A single passage CFD model was developed and used to provide information on the flow features affecting performance in both the stator vanes and turbine.
Following the CFD investigation the design with the best compromise in terms of performance, inertia and increased MFP (Mass Flow Parameter) was selected for manufacture and testing. Tests were performed on a scaled, low temperature turbine test rig. The aerodynamic flow path of the gas stand was the same as that investigated during the CFD. The test results revealed a design which had similar performance at the closed stator vane positions when compared to the baseline wheel. At the maximum MFR stator vane condition a drop of −0.6% pts in efficiency was seen. However, 5.5% increase in MFP was obtained with the additional benefit of a drop in rotor inertia of 3.7%, compared to the baseline wheel.
Resumo:
The present study aims to characterize ultrafine particles emitted during gas metal arc welding of mild steel and stainless steel, using different shielding gas mixtures, and to evaluate the effect of metal transfer modes, controlled by both processing parameters and shielding gas composition, on the quantity and morphology of the ultrafine particles. It was found that the amount of emitted ultrafine particles (measured by particle number and alveolar deposited surface area) are clearly dependent from the main welding parameters, namely the current intensity and the heat input of the Welding process. The emission of airborne ultrafine particles increases with the current intensity as fume formation rate does. When comparing the shielding gas mixtures, higher emissions were observed for more oxidizing mixtures, that is, with higher CO2 content, which means that these mixtures originate higher concentrations of ultrafine particles (as measured by number of particles. by cubic centimeter of air) and higher values of alveolar deposited surface area of particles, thus resulting in a more hazardous condition regarding welders exposure.
Resumo:
El presente trabajo pretendía investigar y analizar el funcionamiento del mercado de hidrocarburos y gas natural, en busca de determinar la Influencia de la exploración y el almacenamiento de petróleo y gas natural en la relación de las organizaciones con las comunidades. Teniendo en cuenta el concepto de comunidad a partir del marketing relacional donde la comunidad se refiere a los consumidores y el entorno en el cual están inmersos. En este contexto se definieron los principales actores que participan en la relación comercial, el tipo de relación presente entre ellos y todos los factores que intervienen en desarrollo de esta relación que cada vez es más inestable y de corto plazo. Al finalizar esta investigación se reunió información acerca de las relaciones comerciales en el mercado de hidrocarburos, que servirán de fundamento para investigaciones futuras que permitirán plantear alternativas para sobrellevar la incertidumbre de este mercado y de esa manera lograr desarrollar una relación más confiable y duradera entre las organizaciones y las comunidades que intervienen en el proceso comercial. Debido a que aunque existe gran diversidad estrategias que pueden ser implementadas para mantener una relación estable, estas en la mayor parte de los casos no son utilizadas.
Resumo:
This paper analyses the interplay between shale gas and the EU internal gas market. Drawing on data presented in the 2012 International Energy Agency’s report on unconventional gas and additional scenario analyses performed by the Joint Research Centre, the paper is based on the assumption that shale gas will not fundamentally change the EU’s dependence on foreign gas supplies. It argues that attention should be shifted away from hyping shale gas to completing the internal gas market. Two main reasons are given for this. First, the internal gas market is needed to enable shale gas development in countries where there is political support for shale gas extraction. And second, a well-functioning internal gas market would, arguably, contribute much more to Europe’s security of supply than domestic shale gas exploitation. This has important implications for the shale gas industry. As it is hard to see how subsidies or exemptions from environmental legislation could be justified, shale gas development in Europe will only go ahead if it proves to be both economically and environmentally viable. It is thus up to the energy industry to demonstrate that this is the case.