442 resultados para GLYCOSYLATION


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polypeptides targeted to the yeast endoplasmic reticulum (ER) posttranslationally are thought to be kept in the cytoplasm in an unfolded state by Hsp70 chaperones before translocation. We show here that Escherichia coli β-lactamase associated with Hsp70, but adopted a native-like conformation before translocation in living Saccharomyces cerevisiae cells. β-Lactamase is a globular trypsin-resistant molecule in authentic form. For these studies, it was linked to the C terminus of a yeast polypeptide Hsp150Δ, which conferred posttranslational translocation and provided sites for O-glycosylation. We devised conditions to retard translocation of Hsp150Δ-β-lactamase. This enabled us to show by protease protection assays that an unglycosylated precursor was associated with the cytoplasmic surface of isolated microsomes, whereas a glycosylated form resided inside the vesicles. Both proteins were trypsin resistant and had similar β-lactamase activity and Km values for nitrocefin. The enzymatically active cytoplasmic intermediate could be chased into the ER, followed by secretion of the activity to the medium. Productive folding in the cytoplasm occurred in the absence of disulfide formation, whereas in the ER lumen, proper folding required oxidation of the sulfhydryls. This suggests that the polypeptide was refolded in the ER and consequently, at least partially unfolded for translocation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To study the role of carbohydrate in lysosomal protein transport, we engineered two novel glycosylation signals (Asn-X-Ser/Thr) into the cDNA of human procathepsin L, a lysosomal acid protease. We constructed six mutant cDNAs encoding glycosylation signals at mutant sites Asn-138, Asn-175, or both sites together, in the presence or absence of the wild-type Asn-204 site. We stably transfected wild-type and mutant cDNAs into NIH3T3 mouse fibroblasts and then used species-specific antibodies to determine the glycosylation status, phosphorylation, localization, and transport kinetics of recombinant human procathepsin L containing one, two, or three glycosylation sites. Both novel glycosylation sites were capable of being glycosylated, although Asn-175 was utilized only 30–50% of the time. Like the wild-type glycosylation at Asn-204, carbohydrates at Asn-138 and Asn-175 were completely sensitive to endoglycosidase H, and they were phosphorylated. Mutant proteins containing two carbohydrates were capable of being delivered to lysosomes, but there was not a consistent relationship between the efficiency of lysosomal delivery and carbohydrate content of the protein. Pulse-chase labeling revealed a unique biosynthetic pattern for proteins carrying the Asn-175 glycosylation sequence. Whereas wild-type procathepsin L and mutants bearing carbohydrate at Asn-138 appeared in lysosomes by about 60 min, proteins with carbohydrate at Asn-175 were processed to a lysosome-like polypeptide within 15 min. Temperature shift, brefeldin A, and NH4Cl experiments suggested that the rapid processing did not occur in the endoplasmic reticulum and that Asn-175 mutants could interact with the mannose 6-phosphate receptor. Taken together, our results are consistent with the interpretation that Asn-175 carbohydrate confers rapid transport to lysosomes. We may have identified a recognition domain in procathepsin L that is important for its interactions with the cellular transport machinery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Integral membrane proteins (IMPs) contain localization signals necessary for targeting to their resident subcellular compartments. To define signals that mediate localization to the Golgi complex, we have analyzed a resident IMP of the Saccharomyces cerevisiae Golgi complex, guanosine diphosphatase (GDPase). GDPase, which is necessary for Golgi-specific glycosylation reactions, is a type II IMP with a short amino-terminal cytoplasmic domain, a single transmembrane domain (TMD), and a large catalytic lumenal domain. Regions specifying Golgi localization were identified by analyzing recombinant proteins either lacking GDPase domains or containing corresponding domains from type II vacuolar IMPs. Neither deletion nor substitution of the GDPase cytoplasmic domain perturbed Golgi localization. Exchanging the GDPase TMD with vacuolar protein TMDs only marginally affected Golgi localization. Replacement of the lumenal domain resulted in mislocalization of the chimeric protein from the Golgi to the vacuole, but a similar substitution leaving 34 amino acids of the GDPase lumenal domain intact was properly localized. These results identify a major Golgi localization determinant in the membrane-adjacent lumenal region (stem) of GDPase. Although necessary, the stem domain is not sufficient to mediate localization; in addition, a membrane-anchoring domain and either the cytoplasmic or full-length lumenal domain must be present to maintain Golgi residence. The importance of lumenal domain sequences in GDPase Golgi localization and the requirement for multiple hydrophilic protein domains support a model for Golgi localization invoking protein–protein interactions rather than interactions between the TMD and the lipid bilayer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phosphatidylcholine (PC) is a major source of lipid-derived second messenger molecules that function as both intracellular and extracellular signals. PC-specific phospholipase D (PLD) and phosphatidic acid phosphohydrolase (PAP) are two pivotal enzymes in this signaling system, and they act in series to generate the biologically active lipids phosphatidic acid (PA) and diglyceride. The identity of the PAP enzyme involved in PLD-mediated signal transduction is unclear. We provide the first evidence for a functional role of a type 2 PAP, PAP2b, in the metabolism of PLD-generated PA. Our data indicate that PAP2b localizes to regions of the cell in which PC hydrolysis by PLD is taking place. Using a newly developed PAP2b-specific antibody, we have characterized the expression, posttranslational modification, and localization of endogenous PAP2b. Glycosylation and localization of PAP2b appear to be cell type and tissue specific. Biochemical fractionation and immunoprecipitation analyses revealed that PAP2b and PLD2 activities are present in caveolin-1–enriched detergent-resistant membrane microdomains. We found that PLD2 and PAP2b act sequentially to generate diglyceride within this specialized membrane compartment. The unique lipid composition of these membranes may provide a selective environment for the regulation and actions of enzymes involved in signaling through PC hydrolysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We are studying endoplasmic reticulum–associated degradation (ERAD) with the use of a truncated variant of the type I ER transmembrane glycoprotein ribophorin I (RI). The mutant protein, RI332, containing only the N-terminal 332 amino acids of the luminal domain of RI, has been shown to interact with calnexin and to be a substrate for the ubiquitin-proteasome pathway. When RI332 was expressed in HeLa cells, it was degraded with biphasic kinetics; an initial, slow phase of ∼45 min was followed by a second phase of threefold accelerated degradation. On the other hand, the kinetics of degradation of a form of RI332 in which the single used N-glycosylation consensus site had been removed (RI332-Thr) was monophasic and rapid, implying a role of the N-linked glycan in the first proteolytic phase. RI332 degradation was enhanced when the binding of glycoproteins to calnexin was prevented. Moreover, the truncated glycoprotein interacted with calnexin preferentially during the first proteolytic phase, which strongly suggests that binding of RI332 to the lectin-like protein may result in the slow, initial phase of degradation. Additionally, mannose trimming appears to be required for efficient proteolysis of RI332. After treatment of cells with the inhibitor of N-glycosylation, tunicamycin, destruction of the truncated RI variants was severely inhibited; likewise, in cells preincubated with the calcium ionophore A23187, both RI332 and RI332-Thr were stabilized, despite the presence or absence of the N-linked glycan. On the other hand, both drugs are known to trigger the unfolded protein response (UPR), resulting in the induction of BiP and other ER-resident proteins. Indeed, only in drug-treated cells could an interaction between BiP and RI332 and RI332-Thr be detected. Induction of BiP was also evident after overexpression of murine Ire1, an ER transmembrane kinase known to play a central role in the UPR pathway; at the same time, stabilization of RI332 was observed. Together, these results suggest that binding of the substrate proteins to UPR-induced chaperones affects their half lives.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pore-forming α subunit of large conductance voltage- and Ca2+-sensitive K (MaxiK) channels is regulated by a β subunit that has two membrane-spanning regions separated by an extracellular loop. To investigate the structural determinants in the pore-forming α subunit necessary for β-subunit modulation, we made chimeric constructs between a human MaxiK channel and the Drosophila homologue, which we show is insensitive to β-subunit modulation, and analyzed the topology of the α subunit. A comparison of multiple sequence alignments with hydrophobicity plots revealed that MaxiK channel α subunits have a unique hydrophobic segment (S0) at the N terminus. This segment is in addition to the six putative transmembrane segments (S1–S6) usually found in voltage-dependent ion channels. The transmembrane nature of this unique S0 region was demonstrated by in vitro translation experiments. Moreover, normal functional expression of signal sequence fusions and in vitro N-linked glycosylation experiments indicate that S0 leads to an exoplasmic N terminus. Therefore, we propose a new model where MaxiK channels have a seventh transmembrane segment at the N terminus (S0). Chimeric exchange of 41 N-terminal amino acids, including S0, from the human MaxiK channel to the Drosophila homologue transfers β-subunit regulation to the otherwise unresponsive Drosophila channel. Both the unique S0 region and the exoplasmic N terminus are necessary for this gain of function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poliovirus initiates infection by binding to its cellular receptor (Pvr). We have studied this interaction by using cryoelectron microscopy to determine the structure, at 21-Å resolution, of poliovirus complexed with a soluble form of its receptor (sPvr). This density map aided construction of a homology-based model of sPvr and, in conjunction with the known crystal structure of the virus, allowed delineation of the binding site. The virion does not change significantly in structure on binding sPvr in short incubations at 4°C. We infer that the binding configuration visualized represents the initial interaction that is followed by structural changes in the virion as infection proceeds. sPvr is segmented into three well-defined Ig-like domains. The two domains closest to the virion (domains 1 and 2) are aligned and rigidly connected, whereas domain 3 diverges at an angle of ≈60°. Two nodules of density on domain 2 are identified as glycosylation sites. Domain 1 penetrates the “canyon” that surrounds the 5-fold protrusion on the capsid surface, and its binding site involves all three major capsid proteins. The inferred pattern of virus–sPvr interactions accounts for most mutations that affect the binding of Pvr to poliovirus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Surface glycosylation of endothelial cells is relevant to various processes including coagulation, inflammation, metastasis, and lymphocyte homing. One of the essential sugars involved in these processes is fucose linked α1→3 to N-acetylglucosamine. A family of α1,3-fucosyltransferases (FucTs) called FucT-III, IV, V, VI, VII, and IX is able to catalyze such fucosylations. Reverse transcription–PCR analysis revealed that human umbilical vein endothelial cells express all of the FucTs except FucT-IX. The predominant activity, as inferred by acceptor specificity of enzyme activity in cell lysates, is compatible with the presence of FucT-VI. By using an antibody to recombinant soluble FucT-VI, the enzyme colocalized with β4-galactosyltransferase-1 to the Golgi apparatus. By using a polyclonal antiserum raised against a 17-aa peptide of the variable (stem) region of the FucT-VI, immunocytochemical staining of FucT-VI was restricted to Weibel–Palade bodies, as determined by colocalization with P-selectin and von Willebrand factor. SDS/PAGE immunoblotting and amino acid sequencing of internal peptides confirmed the identity of the antigen isolated by the peptide-specific antibody as FucT-VI. Storage of a fucosyltransferase in Weibel–Palade bodies suggests a function independent of Golgi-associated glycosylation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To initiate fertilization, mouse sperm bind to Ser- (O-) linked oligosaccharides located at the sperm combining site of zona pellucida glycoprotein mZP3. Apparently, the oligosaccharides are present on one or more of five Ser residues clustered in the carboxyl-terminal region of the mZP3 polypeptide. Here, each of the Ser residues, as well as an intervening Asn residue, was converted to a small, nonhydroxy amino acid by site-directed mutagenesis. Mouse embryonal carcinoma (EC) cells were then stably transfected with the wild-type and mutated mZP3 genes. In each case, transfected cells synthesized and secreted recombinant EC-mZP3 into the culture medium. The glycoproteins were partially purified and assayed for their ability to inhibit binding of sperm to ovulated eggs in vitro. As compared with wild-type EC-mZP3, mutations of Ser-329, Ser-331, or Ser-333 had no effect on sperm receptor activity. Mutation of Asn-330, a potential N-linked glycosylation site, also had no effect on sperm receptor activity. On the other hand, mutation of either Ser-332 or Ser-334, or mutation of Ser-332, Ser-333, and Ser-334, resulted in complete inactivation of EC-mZP3 as a sperm receptor. These results suggest that Ser-332 and Ser-334, residues conserved in mouse, hamster, and human ZP3, are essential for sperm receptor activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

GlycoSuiteDB is a relational database that curates information from the scientific literature on glyco­protein derived glycan structures, their biological sources, the references in which the glycan was described and the methods used to determine the glycan structure. To date, the database includes most published O-linked oligosaccharides from the last 50 years and most N-linked oligosaccharides that were published in the 1990s. For each structure, information is available concerning the glycan type, linkage and anomeric configuration, mass and composition. Detailed information is also provided on native and recombinant sources, including tissue and/or cell type, cell line, strain and disease state. Where known, the proteins to which the glycan structures are attached are reported, and cross-references to the SWISS-PROT/TrEMBL protein sequence databases are given if applicable. The GlycoSuiteDB annotations include literature references which are linked to PubMed, and detailed information on the methods used to determine each glycan structure are noted to help the user assess the quality of the structural assignment. GlycoSuiteDB has a user-friendly web interface which allows the researcher to query the database using mono­isotopic or average mass, monosaccharide composition, glycosylation linkages (e.g. N- or O-linked), reducing terminal sugar, attached protein, taxonomy, tissue or cell type and GlycoSuiteDB accession number. Advanced queries using combinations of these parameters are also possible. GlycoSuiteDB can be accessed on the web at http://www.glycosuite.com.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plant-specific N-glycosylation can represent an important limitation for the use of recombinant glycoproteins of mammalian origin produced by transgenic plants. Comparison of plant and mammalian N-glycan biosynthesis indicates that β1,4-galactosyltransferase is the most important enzyme that is missing for conversion of typical plant N-glycans into mammalian-like N-glycans. Here, the stable expression of human β1,4-galactosyltransferase in tobacco plants is described. Proteins isolated from transgenic tobacco plants expressing the mammalian enzyme bear N-glycans, of which about 15% exhibit terminal β1,4-galactose residues in addition to the specific plant N-glycan epitopes. The results indicate that the human enzyme is fully functional and localizes correctly in the Golgi apparatus. Despite the fact that through the modified glycosylation machinery numerous proteins have acquired unusual N-glycans with terminal β1,4-galactose residues, no obvious changes in the physiology of the transgenic plants are observed, and the feature is inheritable. The crossing of a tobacco plant expressing human β1,4-galactosyltransferase with a plant expressing the heavy and light chains of a mouse antibody results in the expression of a plantibody that exhibits partially galactosylated N-glycans (30%), which is approximately as abundant as when the same antibody is produced by hybridoma cells. These results are a major step in the in planta engineering of the N-glycosylation of recombinant antibodies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The spectrum of immunogenic epitopes presented by the H2-IAb MHC class II molecule to CD4+ T cells has been defined for two different (clade B and clade D) HIV envelope (gp140) glycoproteins. Hybridoma T cell lines were generated from mice immunized by a sequential prime and boost regime with DNA, recombinant vaccinia viruses, and protein. The epitopes recognized by reactive T cell hybridomas then were characterized with overlapping peptides synthesized to span the entire gp140 sequence. Evidence of clonality also was assessed with antibodies to T cell receptor Vα and Vβ chains. A total of 80 unique clonotypes were characterized from six individual mice. Immunogenic peptides were identified within only four regions of the HIV envelope. These epitope hotspots comprised relatively short sequences (≈20–80 aa in length) that were generally bordered by regions of heavy glycosylation. Analysis in the context of the gp120 crystal structure showed a pattern of uniform distribution to exposed, nonhelical strands of the protein. A likely explanation is that the physical location of the peptide within the native protein leads to differential antigen processing and consequent epitope selection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two cDNAs clones (Cel1 and Cel2) encoding divergent endo-β-1,4-glucanases (EGases) have been isolated from a cDNA library obtained from ripe strawberry (Fragaria x ananassa Duch) fruit. The analysis of the amino acid sequence suggests that Cel1 and Cel2 EGases have different secondary and tertiary structures and that they differ in the presence of potential N-glycosylation sites. By in vitro translation we show that Cel1 and Cel2 bear a functional signal peptide, the cleavage of which yields mature proteins of 52 and 60 kD, respectively. Phylogenetic analysis revealed that the Cel2 EGase diverged early in evolution from other plant EGases. Northern analysis showed that both EGases are highly expressed in fruit and that they have different temporal patterns of accumulation. The Cel2 EGase was expressed in green fruit, accumulating as the fruit turned from green to white and remaining at an elevated, constant level throughout fruit ripening. In contrast, the Cel1 transcript was not detected in green fruit and only a low level of expression was observed in white fruit. The level of Cel1 mRNA increased gradually during ripening, reaching a maximum in fully ripe fruit. The high levels of Cel1 and Cel2 mRNA in ripe fruit and their overlapping patterns of expression suggest that these EGases play an important role in softening during ripening. In addition, the early expression of Cel2 in green fruit, well before significant softening begins, suggests that the product of this gene may also be involved in processes other than fruit softening, e.g. cell wall expansion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The flavoprotein (R)-(+)-mandelonitrile lyase (MDL; EC 4.1.2.10), which plays a key role in cyanogenesis in rosaceous stone fruits, occurs in black cherry (Prunus serotina Ehrh.) homogenates as several closely related isoforms. Biochemical and molecular biological methods were used to investigate MDL microheterogeneity and function in this species. Three novel MDL cDNAs of high sequence identity (designated MDL2, MDL4, and MDL5) were isolated. Like MDL1 and MDL3 cDNAs (Z. Hu, J.E. Poulton [1997] Plant Physiol 115: 1359–1369), they had open reading frames that predicted a flavin adenine dinucleotide-binding site, multiple N-glycosylation sites, and an N-terminal signal sequence. The N terminus of an MDL isoform purified from seedlings matched the derived amino acid sequence of the MDL4 cDNA. Genomic sequences corresponding to the MDL1, MDL2, and MDL4 cDNAs were obtained by polymerase chain reaction amplification of genomic DNA. Like the previously reported mdl3 gene, these genes are interrupted at identical positions by three short, conserved introns. Given their overall similarity, we conclude that the genes mdl1, mdl2, mdl3, mdl4, and mdl5 are derived from a common ancestral gene and constitute members of a gene family. Genomic Southern-blot analysis showed that this family has approximately eight members. Northern-blot analysis using gene-specific probes revealed differential expression of the genes mdl1, mdl2, mdl3, mdl4, and mdl5.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Arabidopsis thaliana AtHKT1 protein, a Na+/K+ transporter, is capable of mediating inward Na+ currents in Xenopus laevis oocytes and K+ uptake in Escherichia coli. HKT1 proteins are members of a superfamily of K+ transporters. These proteins have been proposed to contain eight transmembrane segments and four pore-forming regions arranged in a mode similar to that of a K+ channel tetramer. However, computer analysis of the AtHKT1 sequence identified eleven potential transmembrane segments. We have investigated the membrane topology of AtHKT1 with three different techniques. First, a gene fusion alkaline phosphatase study in E. coli clearly defined the topology of the N-terminal and middle region of AtHKT1, but the model for membrane folding of the C-terminal region had to be refined. Second, with a reticulocyte-lysate supplemented with dog-pancreas microsomes, we demonstrated that N-glycosylation occurs at position 429 of AtHKT1. An engineered unglycosylated protein variant, N429Q, mediated Na+ currents in X. laevis oocytes with the same characteristics as the wild-type protein, indicating that N-glycosylation is not essential for the functional expression and membrane targeting of AtHKT1. Five potential glycosylation sites were introduced into the N429Q. Their pattern of glycosylation supported the model based on the E. coli-alkaline phosphatase data. Third, immunocytochemical experiments with FLAG-tagged AtHKT1 in HEK293 cells revealed that the N and C termini of AtHKT1, and the regions containing residues 135–142 and 377–384, face the cytosol, whereas the region of residues 55–62 is exposed to the outside. Taken together, our results show that AtHKT1 contains eight transmembrane-spanning segments.