945 resultados para GENOME SEQUENCE
Resumo:
The identification and annotation of protein-coding genes is one of the primary goals of whole-genome sequencing projects, and the accuracy of predicting the primary protein products of gene expression is vital to the interpretation of the available data and the design of downstream functional applications. Nevertheless, the comprehensive annotation of eukaryotic genomes remains a considerable challenge. Many genomes submitted to public databases, including those of major model organisms, contain significant numbers of wrong and incomplete gene predictions. We present a community-based reannotation of the Aspergillus nidulans genome with the primary goal of increasing the number and quality of protein functional assignments through the careful review of experts in the field of fungal biology. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Despite many successes of conventional DNA sequencing methods, some DNAs remain difficult or impossible to sequence. Unsequenceable regions occur in the genomes of many biologically important organisms, including the human genome. Such regions range in length from tens to millions of bases, and may contain valuable information such as the sequences of important genes. The authors have recently developed a technique that renders a wide range of problematic DNAs amenable to sequencing. The technique is known as sequence analysis via mutagenesis (SAM). This paper presents a number of algorithms for analysing and interpreting data generated by this technique.
Resumo:
Pulsed field gel electrophoresis of intact chromosomes of Babesia bovis revealed four chromosomes in the haploid genome. A telomere probe, derived from Plasmodium berghei, hybridised to eight SfiI restriction fragments of genomic B. bovis DNA digests indicating the presence of four chromosomes. A small subunit (18S) ribosomal RNA gene probe hybridised to the third chromosome only. The genome size of B. bovis is estimated to be 9.4 million base pairs. The sizes of chromosomes 1, 2, 3 and 4 are estimated to be 1.4, 2.0, 2.8 and 3.2 million base pairs, respectively. (C) 1997 Australian Society for Parasitology. Published by Elsevier Science Ltd.
Resumo:
The complete nucleotide sequence of the genomic RNA from the insect picorna-like virus Drosophila C virus (DCV) was determined. The DCV sequence predicts a genome organization different to that of other RNA virus families whose sequences are known. The single-stranded positive-sense genomic RNA is 9264 nucleotides in length and contains two large open reading frames (ORFs) which are separated by 191 nucleotides. The 5' ORF contains regions of similarities with the RNA-dependent RNA polymerase, helicase and protease domains of viruses from the picornavirus, comovirus and sequivirus families. The 3' ORF encodes the capsid proteins as confirmed by N-terminal sequence analysis of these proteins. The capsid protein coding region is unusual in two ways: firstly the cistron appears to lack an initiating methionine and secondly no subgenomic RNA is produced, suggesting that the proteins may be translated through internal initiation of translation from the genomic length RNA. The finding of this novel genome organization for DCV shows that this virus is not a member of the Picornaviridae as previously thought, but belongs to a distinct and hitherto unrecognized virus family.
Resumo:
We aimed to study patterns of variation and factors influencing the evolutionary dynamics of a satellite DNA, pBuM, in all seven Drosophila species from the buzzatii cluster (repleta group). We analyzed 117 alpha pBuM-1 (monomer length 190 bp) and 119 composite alpha/beta (370 bp) pBuM-2 repeats and determined the chromosome location and long-range organization on DNA fibers of major sequence variants. Such combined methodologies in the study of satDNAs have been used in very few organisms. In most species, concerted evolution is linked to high copy number of pBuM repeats. Species presenting low-abundance and scattered distributed pBuM repeats did not undergo concerted evolution and maintained part of the ancestral inter-repeat variability. The alpha and alpha/beta repeats colocalized in heterochromatic regions and were distributed on multiple chromosomes, with notable differences between species. High-resolution FISH revealed array sizes of a few kilobases to over 0.7 Mb and mutual arrangements of alpha and alpha/beta repeats along the same DNA fibers, but with considerable changes in the amount of each variant across species. From sequence, chromosomal and phylogenetic data, we could infer that homogenization and amplification events involved both new and ancestral pBuM variants. Altogether, the data on the structure and organization of the pBuM satDNA give insights into genome evolution including mechanisms that contribute to concerted evolution and diversification.
Resumo:
Epoxide hydrolases are multifunctional enzymes that are best known in insects for their role in juvenile hormone (JH) degradation. Enzymes involved in JH catabolism can play major roles during metamorphosis and reproduction, such as the JH epoxide hydrolase (JHEH), which degrades JH through hydration of the epoxide moiety to form JH diol, and JH esterase (JHE), which hydrolyzes the methyl ester to produce JH acid. In the honey bee, JH has been co-opted for additional functions, mainly in caste differentiation and in age-related behavioral development of workers, where the activity of both enzymes could be important for JH titer regulation. Similarity searches for jheh candidate genes in the honey bee genome revealed a single Amjheh gene. Sequence analysis, quantification of Amjheh transcript levels and Western blot assays using an AmJHEH-specific antibody generated during this study revealed that the AmJHEH found in the fat body shares features with the microsomal JHEHs from several insect species. Using a partition assay we demonstrated that AmJHEH has a negligible role in JH degradation, which, in the honey bee, is thus performed primarily by JHE. High AmJHEH levels in larvae and adults were related to the ingestion of high loads of lipids, suggesting that AmJHEH has a role in dietary lipid catabolism. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
An analysis of the relationships of the major arthropod groups Was undertaken using mitochondrial genome data to examine the hypotheses that Hexapoda is polyphyletic and that Collembola is more closely related to branchiopod crustaceans than insects. We sought to examine the sensitivity of this relationship to outgroup choice, data treatment. gene choice and optimality criteria used in the phylogenetic analysis of mitochondrial genome data. Additionally we sequenced the mitochondrial genome of ail archaeognathan, Nesomachilis australica. to improve taxon selection in the apterygote insects, a group poorly represented in previous mitochondrial phylogenies. The sister group of the Collembola was rarely resolved in our analyses with a significant level of support. The use of different outgroups (myriapods, nematodes, or annelids + mollusks) resulted in many different placements of Collembola. The way in which the dataset was coded for analysis (DNA, DNA with the exclusion of third codon position and as amino acids) also had marked affects on tree topology. We found that nodal Support was spread evenly throughout the 13 mitochondrial genes and the exclusion of genes resulted in significantly less resolution in the inferred trees. Optimality criteria had a much lesser effect on topology than the preceding factors; parsimony and Bayesian trees for a given data set and treatment were quite similar. We therefore conclude that the relationships of the extant arthropod groups as inferred by mitochondrial genomes are highly vulnerable to outgroup choice, data treatment and gene choice, and no consistent alternative hypothesis of Collembola's relationships is supported. Pending the resolution of these identified problems with the application of mitogenomic data to basal arthropod relationships, it is difficult to justify the rejection of hexapod monophyly, which is well supported on morphological grounds. (c) The Willi Hennig Society 2004.
Resumo:
We describe here two new transposable elements, CemaT4 and CemaT5, that were identified within the sequenced genome of Caenorhabditis elegans using homology based searches. Five variants of CemaT4 were found, all non-autonomous and sharing 26 bp inverted terminal repeats (ITRs) and segments (152-367 bp) of sequence with similarity to the CemaT1 transposon of C. elegans. Sixteen copies of a short, 30 bp repetitive sequence, comprised entirely of an inverted repeat of the first 15 bp of CemaT4's ITR, were also found, each flanked by TA dinucleotide duplications, which are hallmarks of target site duplications of mariner-Tc transposon transpositions. The CemaT5 transposable element had no similarity to maT elements, except for sharing identical ITR sequences with CemaT3. We provide evidence that CemaT5 and CemaT3 are capable of excising from the C. elegans genome, despite neither transposon being capable of encoding a functional transposase enzyme. Presumably, these two transposons are cross-mobilised by an autonomous transposon that recognises their shared ITRs. The excisions of these and other non-autonomous elements may provide opportunities for abortive gap repair to create internal deletions and/or insert novel sequence within these transposons. The influence of non-autonomous element mobility and structural diversity on genome variation is discussed.
Resumo:
Microsatellites or simple sequence repeats (SSRs) are ubiquitous in eukaryotic genomes. Single-locus SSR markers have been developed for a number of species, although there is a major bottleneck in developing SSR markers whereby flanking sequences must be known to design 5'-anchors for polymerase chain reaction (PCR) primers. Inter SSR (ISSR) fingerprinting was developed such that no sequence knowledge was required. Primers based on a repeat sequence, such as (CA)(n), can be made with a degenerate 3'-anchor, such as (CA)(8)RG or (AGC)(6)TY. The resultant PCR reaction amplifies the sequence between two SSRs, yielding a multilocus marker system useful for fingerprinting, diversity analysis and genome mapping. PCR products are radiolabelled with P-32 or P-33 via end-labelling or PCR incorporation, and separated on a polyacrylamide sequencing gel prior to autoradiographic visualisation. A typical reaction yields 20-100 bands per lane depending on the species and primer. We have used ISSR fingerprinting in a number of plant species, and report here some results on two important tropical species, sorghum and banana. Previous investigators have demonstrated that ISSR analysis usually detects a higher level of polymorphism than that detected with restriction fragment length polymorphism (RFLP) or random amplified polymorphic DNA (RAPD) analyses. Our data indicate that this is not a result of greater polymorphism genetically, but rather technical reasons related to the detection methodology used for ISSR analysis.
Resumo:
Rapid evolution and high intrahost sequence diversity are hallmarks of human and simian immunodeficiency virus (HIV/SIV) infection. Minor viral variants have important implications for drug resistance, receptor tropism, and immune evasion. Here, we used ultradeep pyrosequencing to sequence complete HIV/SIV genomes, detecting variants present at a frequency as low as 1%. This approach provides a more complete characterization of the viral population than is possible with conventional methods, revealing low-level drug resistance and detecting previously hidden changes in the viral population. While this work applies pyrosequencing to immunodeficiency viruses, this approach could be applied to virtually any viral pathogen.
Resumo:
As a consequence of selective pressure exerted by the immune response during hepatitis C virus (HCV) infection, a high rate of nucleotide mutations in the viral genome is observed which leads to the emergence of viral escape mutants. The aim of this study was to evaluate the evolution of the amino acid (aa) sequence of the HCV nonstructural protein 3 (NS3) in viral isolates after liver transplantation. Six patients with HCV-induced liver disease undergoing liver transplantation (LT) were followed up for sequence analysis. Hepatitis C recurrence was observed in all patients after LT. The rate of synonymous (dS) nucleotide substitutions was much higher than that of nonsynonymous (dN) ones in the NS3 encoding region. The high values of the dS/dN ratios suggest no sustained adaptive evolution selection pressure and, therefore, absence of specific NS3 viral populations. Clinical genotype assignments were supported by phylogenetic analysis. Serial samples from each patient showed lower mean nucleotide genetic distance when compared with samples of the same HCV genotype and subtype. The NS3 samples studied had an N-terminal aa sequence with several differences as compared with reference ones, mainly in genotype 1b-infected patients. After LT, as compared with the sequences before, a few reverted aa substitutions and several established aa substitutions were observed at the N-terminal of NS3. Sites described to be involved in important functions of NS3, notably those of the catalytic triad and zinc binding, remained unaltered in terms of aa sequence. Rare or frequent aa substitutions occurred indiscriminately in different positions. Several cytotoxic T lymphocyte epitopes described for HCV were present in our 1b samples. Nevertheless, the deduced secondary structure of the NS3 protease showed a few alterations in samples from genotype 3a patients, but none were seen in 1b cases. Our data, obtained from patients under important selective pressure during LT, show that the NS3 protease remains well conserved, mainly in HCV 3a patients. It reinforces its potential use as an antigenic candidate for further studies aiming at the development of a protective immune response.
Resumo:
Although patterns of somatic alterations have been reported for tumor genomes, little is known on how they compare with alterations present in non-tumor genomes. A comparison of the two would be crucial to better characterize the genetic alterations driving tumorigenesis. We sequenced the genomes of a lymphoblastoid (HCC1954BL) and a breast tumor (HCC1954) cell line derived from the same patient and compared the somatic alterations present in both. The lymphoblastoid genome presents a comparable number and similar spectrum of nucleotide substitutions to that found in the tumor genome. However, a significant difference in the ratio of non-synonymous to synonymous substitutions was observed between both genomes (P = 0.031). Protein-protein interaction analysis revealed that mutations in the tumor genome preferentially affect hub-genes (P = 0.0017) and are co-selected to present synergistic functions (P < 0.0001). KEGG analysis showed that in the tumor genome most mutated genes were organized into signaling pathways related to tumorigenesis. No such organization or synergy was observed in the lymphoblastoid genome. Our results indicate that endogenous mutagens and replication errors can generate the overall number of mutations required to drive tumorigenesis and that it is the combination rather than the frequency of mutations that is crucial to complete tumorigenic transformation.
Resumo:
Schistosoma mansoni is responsible for the neglected tropical disease schistosomiasis that affects 210 million people in 76 countries. Here we present analysis of the 363 megabase nuclear genome of the blood fluke. It encodes at least 11,809 genes, with an unusual intron size distribution, and new families of micro-exon genes that undergo frequent alternative splicing. As the first sequenced flatworm, and a representative of the Lophotrochozoa, it offers insights into early events in the evolution of the animals, including the development of a body pattern with bilateral symmetry, and the development of tissues into organs. Our analysis has been informed by the need to find new drug targets. The deficits in lipid metabolism that make schistosomes dependent on the host are revealed, and the identification of membrane receptors, ion channels and more than 300 proteases provide new insights into the biology of the life cycle and new targets. Bioinformatics approaches have identified metabolic chokepoints, and a chemogenomic screen has pinpointed schistosome proteins for which existing drugs may be active. The information generated provides an invaluable resource for the research community to develop much needed new control tools for the treatment and eradication of this important and neglected disease.
Resumo:
The complete arrangement of genes in the mitochondrial (mt) genome is known for 12 species of insects, and part of the gene arrangement in the mt genome is known for over 300 other species of insects. The arrangement of genes in the mt genome is very conserved in insects studied, since all of the protein-coding and rRNA genes and most of the tRNA genes are arranged in the same way. We sequenced the entire mt genome of the wallaby louse, Heterodoxus macropus, which is 14,670 bp long and has the 37 genes typical of animals and some noncoding regions. The largest noncoding region is 73 bp long (93% A+T), and the second largest is 47 bp long (92% AST). Both of these noncoding regions seem to be able to form stem-loop structures. The arrangement of genes in the mt genome of this louse is unlike that of any other animal studied. All tRNA genes have moved and/or inverted relative to the ancestral gene arrangement of insects, which is present in the fruit fly Drosophila yakuba. At least nine protein-coding genes (atp6, atp8, cox2, cob, nad1-nad3, nad5, and nad6) have moved; moreover, four of these genes (atp6, atp8, nad1, and nad3) have inverted. The large number of gene rearrangements in the mt genome of H. macropus is unprecedented for an arthropod.
Resumo:
Within a 199 866 base pair (bp) portion of a Plasmodium vivax chromosome we identified a conserved linkage group consisting of at least 41 genes homologous to Plasmodium falciparum genes located on chromosome 3. There were no P. vivax homologues of the P. falciparum cytoadherence-linked asexual genes clag 3.2, clag 3.1 and a var C pseudogene found on the P. vivax chromosome. Within the conserved linkage group, the gene order and structure are identical to those of P. falciparum chromosome 3. This conserved linkage group may extend to as many as 190 genes. The subtelomeric regions are different in size and the P. vivax segment contains genes for which no P. falciparum homologues have been identified to date. The size difference of at least 900 kb between the homologous P. vivax chromosome and P. falciparum chromosome 3 is presumably due to a translocation. There is substantial sequence divergence with a much higher guanine + cytosine (G + C) content in the DNA and a preference for amino acids using GC-rich codons in the deduced proteins of P. vivax. This structural conservation of homologous genes and their products combined with sequence divergence at the nucleotide level makes the P. vivax genome a powerful tool for comparative analyses of Plasmodium genomes. (C) 2001 Elsevier Science B.V. All rights reserved.