952 resultados para GENE DELIVERY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION Inflammation is a protective attempt to facilitate the removal of damaged tissue and to initiate the healing response in other tissues. However, after spinal cord injury (SCI), this response is prolonged leading to secondary degeneration and glial scarring. Here, we investigate the potential of sustained delivery of pro-inflammatory factors vascular endothelial growth factor (VEGF) and platelet derived growth factor (PDGF) to increase early inflammatory events and promote inflammatory resolution. Method Animal ethics approval was obtained from the Queensland University of Technology. Adult Wistar-Kyoto rats (12-16 weeks old) were subjected to laminectomies and T10 hemisections. Animals were then randomised to treatment (implantation of osmotic pump (Alzet) loaded with 5ug VEGF & 5 ug PDGF) or control groups (lesion control or lesion plus pump delivering PBS). Rats were sacrificed at one month and the spinal cords were harvested and examined by immunohistology, using anti-neurofilament-200(NF200) and anti- ionized calcium binding adapter molecule 1 (Iba1). One way ANOVA was used for statistic analysis. Results At 1 month, active pump-treated cords showed a high level of axonal filament throughout the defects as compared to the control groups. The mean lesion size, as measured by NF200, was 0.47mm2 for the lesion control, 0.39mm2 for the vehicle control and 0.078mm2 for the active pump group. Significant differences were detected between the active pump group and the two control groups (AP vs LC p= 0.017 AG vs VC p= 0.004). Iba-1 staining also showed significant differences in the post-injury inflammatory response. Discussion We have shown that axons and activated microglia are co-located in the lesion of the treated cord. We hypothesise the delivery of VEGF/PDGF increases the local vessel permeability to inflammatory cells and activates these along with the resident microglia to threshold population, which ultimately resolved the prolonged inflammation. Here, we have shown that maintaining the inflammatory signals for at least 7 days improved the morphology of the injured cord. Conclusion This study has shown that boosting inflammation, by delivery VEGF/PDGF, in the early phase of SCI helps to reduce secondary degeneration and may promote inflammation resolution. This treatment may provide a platform for other neuro-regenrative therapies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction During development and regeneration, odontogenesis and osteogenesis are initiated by a cascade of signals driven by several master regulatory genes. Methods In this study, we investigated the differential expression of 84 stem cell–related genes in dental pulp cells (DPCs) and periodontal ligament cells (PDLCs) undergoing odontogenic/osteogenic differentiation. Results Our results showed that, although there was considerable overlap, certain genes had more differential expression in PDLCs than in DPCs. CCND2, DLL1, and MME were the major upregulated genes in both PDLCs and DPCs, whereas KRT15 was the only gene significantly downregulated in PDLCs and DPCs in both odontogenic and osteogenic differentiation. Interestingly, a large number of regulatory genes in odontogenic and osteogenic differentiation interact or crosstalk via Notch, Wnt, transforming growth factor β (TGF-β)/bone morphogenic protein (BMP), and cadherin signaling pathways, such as the regulation of APC, DLL1, CCND2, BMP2, and CDH1. Using a rat dental pulp and periodontal defect model, the expression and distribution of both BMP2 and CDH1 have been verified for their spatial localization in dental pulp and periodontal tissue regeneration. Conclusions This study has generated an overview of stem cell–related gene expression in DPCs and PDLCs during odontogenic/osteogenic differentiation and revealed that these genes may interact through the Notch, Wnt, TGF-β/BMP, and cadherin signalling pathways to play a crucial role in determining the fate of dental derived cell and dental tissue regeneration. These findings provided a new insight into the molecular mechanisms of the dental tissue mineralization and regeneration

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transmissible diseases are re-emerging as a global problem, with Sexually Transmitted Diseases (STDs) becoming endemic. Chlamydia trachomatis is the leading cause of bacterially-acquired STD worldwide, with the Australian cost of infection estimated at $90 - $160 million annually. Studies using animal models of genital tract Chlamydia infection suggested that the hormonal status of the genital tract epithelium at the time of exposure may influence the outcome of infection. Oral contraceptive use also increased the risk of contracting chlamydial infections compared to women not using contraception. Generally it was suggested that the outcome of chlamydial infection is determined in part by the hormonal status of the epithelium at the time of exposure. Using the human endolmetrial cell line ECC-1 this study investigated the effects of C. trachomatis serovar D infection, in conjunction with the female sex hormones, 17β-estradiol and progesterone, on chlamydial gene expression. While previous studies have examined the host response, this is the first study to examine C.trachomatis gene expression under different hormonal conditions. We have highlighted a basic model of C. trachomatis gene regulation in the presence of steroid hormones by identifying 60 genes that were regulated by addition of estradiol and/or progesterone. In addition, the third chapter of this thesis discussed and compared the significance of the current findings in the context of data from other research groups to improve our understanding of the molecular basis of chlamydial persistence under hormonal different conditions. In addition, this study analysed the effects of these female sex hormones and C. trachomatis Serovar D infection, on host susceptibility and bacterial growth. Our results clearly demonstrated that addition of steroid hormones not only had a great impact on the level of infectivity of epithelial cells with C.trachomatis serovar D, but also the morphology of chlamydial inclusions was affected by hormone supplementation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ghrelin is a multi-functional peptide hormone which affects various processes including growth hormone and insulin release, appetite regulation, gut motility, metabolism and cancer cell proliferation. Ghrelin is produced in the stomach and in other normal and pathological cell types. It may act as an endocrine or autocrine/paracrine factor. The ghrelin gene encodes a precursor protein, preproghrelin, from which ghrelin and other potentially active peptides are derived by alternative mRNA splicing and/or proteolytic processing. The metabolic role of the peptide obestatin, derived from the preproghrelin C-terminal region, is controversial. However, it has direct effects on cancer cell proliferation. The regulation of ghrelin expression and the mechanisms through which the peptide products arise are unclear. We have recently re-examined the organisation of the ghrelin gene and identified several novel exons and transcripts. One transcript, which lacks the ghrelin-coding region of preproghrelin, contains the coding sequence of obestatin. Furthermore, we have identified an overlapping gene on the antisense strand of ghrelin, GHRLOS, which generates transcripts that may function as non-coding regulatory RNAs or code for novel, short bioactive peptides. The identification of these novel ghrelin-gene related transcripts and peptides raises critical questions regarding their physiological function and their role in obesity, diabetes and cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Decline in the frequency of potent mesenchymal stem cells (MSCs) has been implicated in ageing and degenerative diseases. Increasing the circulating stem cell population can lead to renewed recruitment of these potent cells at sites of damage. Therefore, identifying the ideal cells for ex vivo expansion will form a major pursuit of clinical applications. This study is a follow-up of previous work that demonstrated the occurrence of fast-growing multipotential cells from the bone marrow samples. To investigate the molecular processes involved in the existence of such varying populations, gene expression studies were performed between fast- and slow-growing clonal populations to identify potential genetic markers associated with stemness using the quantitative real-time polymerase chain reaction comprising a series of 84 genes related to stem cell pathways. A group of 10 genes were commonly overrepresented in the fast-growing stem cell clones. These included genes that encode proteins involved in the maintenance of embryonic and neural stem cell renewal (sex-determining region Y-box 2, notch homolog 1, and delta-like 3), proteins associated with chondrogenesis (aggrecan and collagen 2 A1), growth factors (bone morphogenetic protein 2 and insulin-like growth factor 1), an endodermal organogenesis protein (forkhead box a2), and proteins associated with cell-fate specification (fibroblast growth factor 2 and cell division cycle 2). Expression of diverse differentiation genes in MSC clones suggests that these commonly expressed genes may confer the maintenance of multipotentiality and self-renewal of MSCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Porous mesopore-bioglass (MBG) scaffolds have been proposed as a new class of bone regeneration materials due to their apatite-formation and drug-delivery properties; however, the material’s inherent brittleness and high degradation and surface instability are major disadvantages, which compromise its mechanical strength and cytocompatibility as a biological scaffold. Silk, on the other hand, is a native biomaterial and is well characterized with respect to biocompatibility and tensile strength. In this study we set out to investigate what effects blending silk with MBG had on the physiochemical, drug-delivery and biological properties of MBG scaffolds with a view to bone tissue engineering applications. Transmission electron microscopy (TEM), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) were the methods used to analyze the inner microstructure, pore size and morphology, and composition of MBG scaffolds, before and after addition of silk. The effect of silk modification on the mechanical property of MBG scaffolds was determined by testing the compressive strength of the scaffolds and also compressive strength after degradation over time. The drug-delivery potential was evaluated by the release of dexamethasone (DEX) from the scaffolds. Finally, the cytocompatibility of silk-modified scaffolds was investigated by the attachment, morphology, proliferation, differentiation and bone-relative gene expression of bone marrow stromal cells (BMSCs). The results showed that silk modification improved the uniformity and continuity of pore network of MBG scaffolds, and maintained high porosity (94%) and large-pore size (200–400 mm). There was a significant improvement in mechanical strength, mechanical stability, and control of burst release of DEX in silkmodified MBG scaffolds. Silk modification also appeared to provide a better environment for BMSC attachment, spreading, proliferation, and osteogenic differentiation on MBG scaffolds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A teaching and learning development project is currently under way at Queensland University of Technology to develop advanced technology videotapes for use with the delivery of structural engineering courses. These tapes consist of integrated computer and laboratory simulations of important concepts, and behaviour of structures and their components for a number of structural engineering subjects. They will be used as part of the regular lectures and thus will not only improve the quality of lectures and learning environment, but also will be able to replace the ever-dwindling laboratory teaching in these subjects. The use of these videotapes, developed using advanced computer graphics, data visualization and video technologies, will enrich the learning process of the current diverse engineering student body. This paper presents the details of this new method, the methodology used, the results and evaluation in relation to one of the structural engineering subjects, steel structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microsphere systems with the ideal properties for bone regeneration need to be bioactive, and at the same time possess the capacity for controlled protein/drug-delivery; however, the current crop of microsphere system fails to fulfill these properties. The aim of this study was to develop a novel protein-delivery system of bioactive mesoporous glass (MBG) microspheres by a biomimetic method through controlling the density of apatite on the surface of microspheres, for potential bone tissue regeneration. MBG microspheres were prepared by using the method of alginate cross-linking with Ca2+ ions. The cellular bioactivity of MBG microspheres was evaluated by investigating the proliferation and attachment of bone marrow stromal cell (BMSC). The loading efficiency and release kinetics of bovine serum albumin (BSA) on MBG microspheres were investigated after coprecipitating with biomimetic apatite in simulated body fluids (SBF). The results showed that MBG microspheres supported BMSC attachment and the Si containing ionic products from MBG microspheres stimulated BMSCs proliferation. The density of apatite on MBG microspheres increased with the length of soaking time in SBF. BSA-loading efficiency of MBG was significantly enhanced by co-precipitating with apatite. Furthermore, the loading efficiency and release kinetics of BSA could be controlled by controlling the density of apatite formed on MBG microspheres. Our results suggest that MBG microspheres are a promising protein-delivery system as a filling material for bone defect healing and regeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alginate microspheres are considered a promising material as a drug carrier in bone repair due to excellent biocompatibility, but their main disadvantage is low drug entrapment efficiency and non-controllable release. The aim of this study was to investigate the effect of incorporating mesoporous bioglass (MBG), non-mesoporous bioglass (BG) or hydroxyapatite (HAp) into alginate microspheres on their drug-loading and release properties. X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and atomic emission spectroscopy (AES) were used to analyse the composition, structure and dissolution of bioactive inorganic materials and their microspheres. Dexamethasone (DEX)-loading and release ability of four microspheres were tested in phosphate buffered saline with varying pHs. Results showed that the drug-loading capacity was enhanced with the incorporation of bioactive inorganic materials into alginate microspheres. The MBG/Alginate microspheres had the highest drug loading ability. DEX release from alginate microspheres correlated to the dissolution of MBG, BG and HAp in PBS, and that the pH was an efficient factor in controlling the DEX release; a high pH resulted in greater DEX release, whereas a low pH delayed DEX release. In addition, MBG/alginate, BG/alginate and HAp/alginate microspheres had varying apatite-formation and dissolution abilities, which indicate that the composites would behave differently with respect to bioactivity. The study suggests that microspheres made of a composite of bioactive inorganic materials and alginate have a bioactivity and degradation profile which greatly improves their drug delivery capacity, thus enhancing their potential applications as bioactive filler materials for bone tissue regeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The brain-derived neurotrophic factor (BDNF) has been suggested to play a pivotal role in the aetiology of affective disorders. In order to further clarify the impact of BDNF gene variation on major depression as well as antidepressant treatment response, association of three BDNF polymorphisms [rs7103411, Val66Met (rs6265) and rs7124442] with major depression and antidepressant treatment response was investigated in an overall sample of 268 German patients with major depression and 424 healthy controls. False discovery rate (FDR) was applied to control for multiple testing. Additionally, ten markers in BDNF were tested for association with citalopram outcome in the STAR*D sample. While BDNF was not associated with major depression as a categorical diagnosis, the BDNF rs7124442 TT genotype was significantly related to worse treatment outcome over 6 wk in major depression (p=0.01) particularly in anxious depression (p=0.003) in the German sample. However, BDNF rs7103411 and rs6265 similarly predicted worse treatment response over 6 wk in clinical subtypes of depression such as melancholic depression only (rs7103411: TTgenetic variation in BDNF and antidepressant treatment response or remission. Post-hoc analyses provide some preliminary support for a potential minor role of genetic variation in BDNF and antidepressant treatment outcome in the context of melancholic depression.