856 resultados para Fuzzy inference system


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Ciências Ambientais - Sorocaba

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this work is to determine the membership functions for the construction of a fuzzy controller to evaluate the energy situation of the company with respect to load and power factors. The energy assessment of a company is performed by technicians and experts based on the indices of load and power factors, and analysis of the machines used in production processes. This assessment is conducted periodically to detect whether the procedures performed by employees in relation to how of use electricity energy are correct. With a fuzzy controller, this performed can be done by machines. The construction of a fuzzy controller is initially characterized by the definition of input and output variables, and their associated membership functions. We also need to define a method of inference and a processor output. Finally, you need the help of technicians and experts to build a rule base, consisting of answers that provide these professionals in function of characteristics of the input variables. The controller proposed in this paper has as input variables load and power factors, and output the company situation. Their membership functions representing fuzzy sets called by linguistic qualities, as “VERY BAD” and “GOOD”. With the method of inference Mandani and the processor to exit from the Center of Area chosen, the structure of a fuzzy controller is established, simply by the choice by technicians and experts of the field energy to determine a set of rules appropriate for the chosen company. Thus, the interpretation of load and power factors by software comes to meeting the need of creating a single index that indicates an overall basis (rational and efficient) as the energy is being used.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the application of fuzzy theory to support the decision of implementing energy efficiency program in sawmills operating in the processing of Pinustaeda and Pinuselliotii. The justification of using a system based on fuzzy theory for analysis of consumption and the specific factors involved, such is the diversity of rates / factors. With the fuzzy theory, we can build a reliable system for verifying actual energy efficiency. The indices and factors characteristic of industrial activity were measured and used as the basis for the fuzzy system. We developed a management system and technology. The system involves the management practices in energy efficiency, maintenance of plant and equipment and the presence of qualified staff. The technological system involves the power factor, load factor, the factor of demand and the specific consumption. The first response provides the possibility of increased energy efficiency and the second level of energy efficiency in the industry studied. With this tool, programs can be developed for energy conservation and energy efficiency in the industrial timber with wide application in this area that is as diverse as production processes. The same systems developed can be used in other industrial activities, provided they are used indices and characteristic features of the sectors involved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fuzzy logic accepts infinite intermediate logical values between false and true. In view of this principle, a system based on fuzzy rules was established to provide the best management of Catasetum fimbriatum. For the input of the developed fuzzy system, temperature and shade variables were used, and for the output, the orchid vitality. The system may help orchid experts and amateurs to manage this species. ?Low? (L), ?Medium? (M) and ?High? (H) were used as linguistic variables. The objective of the study was to develop a system based on fuzzy rules to improve management of the Catasetum fimbriatum species, as its production presents some difficulties, and it offers high added value

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Agronegócio e Desenvolvimento - Tupã

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The pharmaceutical industry was consolidated in Brazil in the 1930s, and since then has become increasingly competitive. Therefore the implementation of the Toyota Production System, which aims to lean production, has become common among companies in the segment. The main efficiency indicator currently used is the Overall Equipment Effectiveness (OEE). This paper intends to, using the fuzzy model DEA-BCC, analyze the efficiency of the production lines of a pharmaceutical company in the Paraíba Valley, compare the values obtained by the model with those calculated by the OEE, identify the most sensitive machines to variation in the data input and develop a ranking of effectiveness between the consumer machinery. After the development, it is shown that the accuracy of the relationship between the two methods is approximately 57% and the line considered the most effective by the Toyota Production System is not the same as the one found by this paper

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The pharmaceutical industry was consolidated in Brazil in the 1930s, and since then has become increasingly competitive. Therefore the implementation of the Toyota Production System, which aims to lean production, has become common among companies in the segment. The main efficiency indicator currently used is the Overall Equipment Effectiveness (OEE). This paper intends to, using the fuzzy model DEA-BCC, analyze the efficiency of the production lines of a pharmaceutical company in the Paraíba Valley, compare the values obtained by the model with those calculated by the OEE, identify the most sensitive machines to variation in the data input and develop a ranking of effectiveness between the consumer machinery. After the development, it is shown that the accuracy of the relationship between the two methods is approximately 57% and the line considered the most effective by the Toyota Production System is not the same as the one found by this paper

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: A current challenge in gene annotation is to define the gene function in the context of the network of relationships instead of using single genes. The inference of gene networks (GNs) has emerged as an approach to better understand the biology of the system and to study how several components of this network interact with each other and keep their functions stable. However, in general there is no sufficient data to accurately recover the GNs from their expression levels leading to the curse of dimensionality, in which the number of variables is higher than samples. One way to mitigate this problem is to integrate biological data instead of using only the expression profiles in the inference process. Nowadays, the use of several biological information in inference methods had a significant increase in order to better recover the connections between genes and reduce the false positives. What makes this strategy so interesting is the possibility of confirming the known connections through the included biological data, and the possibility of discovering new relationships between genes when observed the expression data. Although several works in data integration have increased the performance of the network inference methods, the real contribution of adding each type of biological information in the obtained improvement is not clear. Methods: We propose a methodology to include biological information into an inference algorithm in order to assess its prediction gain by using biological information and expression profile together. We also evaluated and compared the gain of adding four types of biological information: (a) protein-protein interaction, (b) Rosetta stone fusion proteins, (c) KEGG and (d) KEGG+GO. Results and conclusions: This work presents a first comparison of the gain in the use of prior biological information in the inference of GNs by considering the eukaryote (P. falciparum) organism. Our results indicates that information based on direct interaction can produce a higher improvement in the gain than data about a less specific relationship as GO or KEGG. Also, as expected, the results show that the use of biological information is a very important approach for the improvement of the inference. We also compared the gain in the inference of the global network and only the hubs. The results indicates that the use of biological information can improve the identification of the most connected proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ever-growing production and the problematization of Environmental Health have shown the need to apprehend complex realities and deal with uncertainties from the most diversified instruments which may even incorporate local aspects and subjectivities by means of qualitative realities, while broadening the capacity of the information system. This paper presents a view on the reflection upon some challenges and possible convergences between the ecosystemic approach and the Fuzzy logic in the process of dealing with scientific information and decision-making in Environmental Health.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the last 60 years, computers and software have favoured incredible advancements in every field. Nowadays, however, these systems are so complicated that it is difficult – if not challenging – to understand whether they meet some requirement or are able to show some desired behaviour or property. This dissertation introduces a Just-In-Time (JIT) a posteriori approach to perform the conformance check to identify any deviation from the desired behaviour as soon as possible, and possibly apply some corrections. The declarative framework that implements our approach – entirely developed on the promising open source forward-chaining Production Rule System (PRS) named Drools – consists of three components: 1. a monitoring module based on a novel, efficient implementation of Event Calculus (EC), 2. a general purpose hybrid reasoning module (the first of its genre) merging temporal, semantic, fuzzy and rule-based reasoning, 3. a logic formalism based on the concept of expectations introducing Event-Condition-Expectation rules (ECE-rules) to assess the global conformance of a system. The framework is also accompanied by an optional module that provides Probabilistic Inductive Logic Programming (PILP). By shifting the conformance check from after execution to just in time, this approach combines the advantages of many a posteriori and a priori methods proposed in literature. Quite remarkably, if the corrective actions are explicitly given, the reactive nature of this methodology allows to reconcile any deviations from the desired behaviour as soon as it is detected. In conclusion, the proposed methodology brings some advancements to solve the problem of the conformance checking, helping to fill the gap between humans and the increasingly complex technology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper aims at the development and evaluation of a personalized insulin infusion advisory system (IIAS), able to provide real-time estimations of the appropriate insulin infusion rate for type 1 diabetes mellitus (T1DM) patients using continuous glucose monitors and insulin pumps. The system is based on a nonlinear model-predictive controller (NMPC) that uses a personalized glucose-insulin metabolism model, consisting of two compartmental models and a recurrent neural network. The model takes as input patient's information regarding meal intake, glucose measurements, and insulin infusion rates, and provides glucose predictions. The predictions are fed to the NMPC, in order for the latter to estimate the optimum insulin infusion rates. An algorithm based on fuzzy logic has been developed for the on-line adaptation of the NMPC control parameters. The IIAS has been in silico evaluated using an appropriate simulation environment (UVa T1DM simulator). The IIAS was able to handle various meal profiles, fasting conditions, interpatient variability, intraday variation in physiological parameters, and errors in meal amount estimations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The report explores the problem of detecting complex point target models in a MIMO radar system. A complex point target is a mathematical and statistical model for a radar target that is not resolved in space, but exhibits varying complex reflectivity across the different bistatic view angles. The complex reflectivity can be modeled as a complex stochastic process whose index set is the set of all the bistatic view angles, and the parameters of the stochastic process follow from an analysis of a target model comprising a number of ideal point scatterers randomly located within some radius of the targets center of mass. The proposed complex point targets may be applicable to statistical inference in multistatic or MIMO radar system. Six different target models are summarized here – three 2-dimensional (Gaussian, Uniform Square, and Uniform Circle) and three 3-dimensional (Gaussian, Uniform Cube, and Uniform Sphere). They are assumed to have different distributions on the location of the point scatterers within the target. We develop data models for the received signals from such targets in the MIMO radar system with distributed assets and partially correlated signals, and consider the resulting detection problem which reduces to the familiar Gauss-Gauss detection problem. We illustrate that the target parameter and transmit signal have an influence on the detector performance through target extent and the SNR respectively. A series of the receiver operator characteristic (ROC) curves are generated to notice the impact on the detector for varying SNR. Kullback–Leibler (KL) divergence is applied to obtain the approximate mean difference between density functions the scatterers assume inside the target models to show the change in the performance of the detector with target extent of the point scatterers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Master production schedule (MPS) plays an important role in an integrated production planning system. It converts the strategic planning defined in a production plan into the tactical operation execution. The MPS is also known as a tool for top management to control over manufacture resources and becomes input of the downstream planning levels such as material requirement planning (MRP) and capacity requirement planning (CRP). Hence, inappropriate decision on the MPS development may lead to infeasible execution, which ultimately causes poor delivery performance. One must ensure that the proposed MPS is valid and realistic for implementation before it is released to real manufacturing system. In practice, where production environment is stochastic in nature, the development of MPS is no longer simple task. The varying processing time, random event such as machine failure is just some of the underlying causes of uncertainty that may be hardly addressed at planning stage so that in the end the valid and realistic MPS is tough to be realized. The MPS creation problem becomes even more sophisticated as decision makers try to consider multi-objectives; minimizing inventory, maximizing customer satisfaction, and maximizing resource utilization. This study attempts to propose a methodology for MPS creation which is able to deal with those obstacles. This approach takes into account uncertainty and makes trade off among conflicting multi-objectives at the same time. It incorporates fuzzy multi-objective linear programming (FMOLP) and discrete event simulation (DES) for MPS development.