952 resultados para Free surface flows
Resumo:
The effect of confinement on the magnetic structure of vortices of dipolar coupled ferromagnetic nanoelements is an issue of current interest, not only for academic reasons, but also for the potential impact in a number of promising applications. Most applications, such as nano-oscillators for wireless data transmission, benefit from the possibility of tailoring the vortex core magnetic pattern. We report a theoretical study of vortex nucleation in pairs of coaxial iron and Permalloy cylinders, with diameters ranging from 21nm to 150nm, and 12nm and 21nm thicknesses, separated by a non-magnetic layer. 12nm thick iron and Permalloy isolated (single) cylinders do not hold a vortex, and 21nm isolated cylinders hold a vortex. Our results indicate that one may tailor the magnetic structure of the vortices, and the relative chirality, by selecting the thickness of the non-magnetic spacer and the values of the cylinders diameters and thicknesses. Also, the dipolar interaction may induce vortex formation in pairs of 12nm thick nanocylinders and inhibit the formation of vortices in pairs of 21nm thick nanocylinders. These new phases are formed according to the value of the distance between the cylinderes. Furthermore, we show that the preparation route may control relative chirality and polarity of the vortex pair. For instance: by saturating a pair of Fe 81nm diameter, 21nm thickness cylinders, along the crystalline anisotropy direction, a pair of 36nm core diameter vortices, with same chirality and polarity is prepared. By saturating along the perpendicular direction, one prepares a 30nm diameter core vortex pair, with opposite chirality and opposite polarity. We also present a theoretical discussion of the impact of vortices on the thermal hysteresis of a pair of interface biased elliptical iron nanoelements, separated by an ultrathin nonmagnetic insulating layer. We have found that iron nanoelements exchange coupled to a noncompensated NiO substrate, display thermal hysteresis at room temperature, well below the iron Curie temperature. The thermal hysteresis consists in different sequences of magnetic states in the heating and cooling branches of a thermal loop, and originates in the thermal reduction of the interface field, and on the rearrangements of the magnetic structure at high temperatures, 5 produce by the strong dipolar coupling. The width of the thermal hysteresis varies from 500 K to 100 K for lateral dimensions of 125 nm x 65 nm and 145 nm x 65 nm. We focus on the thermal effects on two particular states: the antiparallel state, which has, at low temperatures, the interface biased nanoelement with the magnetization aligned with the interface field and the second nanoelement aligned opposite to the interface field; and in the parallel state, which has both nanoelements with the magnetization aligned with the interface field at low temperatures. We show that the dipolar interaction leads to enhanced thermal stability of the antiparallel state, and reduces the thermal stability of the parallel state. These states are the key phases in the application of pairs of ferromagnetic nanoelements, separated by a thin insulating layer, for tunneling magnetic memory cells. We have found that for a pair of 125nm x 65nm nanoelements, separated by 1.1nm, and low temperature interface field strength of 5.88kOe, the low temperature state (T = 100K) consists of a pair of nearly parallel buckle-states. This low temperature phase is kept with minor changes up to T= 249 K when the magnetization is reduced to 50% of the low temperature value due to nucleation of a vortex centered around the middle of the free surface nanoelement. By further increasing the temperature, there is another small change in the magnetization due to vortex motion. Apart from minor changes in the vortex position, the high temperature vortex state remains stable, in the cooling branch, down to low temperatures. We note that wide loop thermal hysteresis may pose limits on the design of tunneling magnetic memory cells
Resumo:
The aim of this study was to evaluate the influence of silica coating and 10-methacryloyloxydecyl dihydrogen phosphate (MDP)-based primer applications upon the bonding durability of a MDP-based resin cement to a yttrium stabilized tetragonal zirconia (Y-TZP) ceramic. Ninety-six Y-TZP tabs were embedded in an acrylic resin (free surface for adhesion: 5 x 5 mm(2)), ground finished and randomly divided into four groups (N = 24) according to the ceramic surface conditioning: (1) cleaning with isopropanol (ALC); (2) ALC + phosphoric acid etching + MDP-based primer application (MDP-primer); (3) silica coating + 3-methacryloyloxypropyl trimethoxysilane (MPS)-based coupling agent application (SiO(2) + MPS-Sil); and (4) SiO(2) + MDP-primer. The MDP-based resin cement was applied on the treated surface using a cylindrical mold (diameter=3 mm). Half of the specimens from each surface conditioning were stored in distilled water (37 C, 24 h) before testing. Another half of the specimens were stored (90 days) and thermo-cycled (12,000x) during this period (90d/TC) before testing. A shear bond strength (SBS) test was performed at a crosshead speed of 0.5 mm/min. Two factors composed the experimental design: ceramic conditioning strategy (in four levels) and storage condition (in two levels), totaling eight groups. After 90d/TC (Tukey; p < 0.05), SiO(2) + MDP-primer (24.40 MPa) promoted the highest SBS. The ALC and MDP-primer groups debonded spontaneously during 90d/TC. Bonding values were higher and more stable in the SiO2 groups. The use of MDP-primer after silica coating increased the bond strength. (C) 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part 8: Appl Biomater 95B: 69-74, 2010.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Ferroelectric Pb1-xCaxTiO3 (x = 0.24) thin films were formed on a Pt/Ti/SiO2/Si substrate by the polymeric precursor method using the dip-coating technique for their deposition. Characterization of the films bq X-ray diffraction showed a perovskite single phase with a tetragonal structure after annealing at 700 degreesC. Atomic force microscopy (AFM) analyses showed that the film had a smooth and crack-free surface with low surface roughness. In addition, the PCT thin film had a granular structure with an 80 nm grain size. The thickness of the films observed by the scanning electron microscopy (SEM) is 550 nm and there is a good adhesion between the film and substrate. For the electrical measurements metal-ferroelectric-metal of the type capacitors were obtained, where the thin films showed good dielectric and ferroelectric properties. The dielectric constant and dissipation factor at 1 kHz and measured at room temperature were found to be 457 and 0.03. respectively. The remanent polarization and coercive field for the: deposited films were P-r = 17 muC/cm(2) and E-c = 75 kV/cm, respectively. Moreover. The 550-nm-thick film showed a current density in the order of 10(-8) A/cm(2) at the applied voltage of 2 V. The high values of the thin film's dielectric properties are attributed to its excellent microstructural quality and the chemical homogeneity obtained by the polymeric precursor method. (C) 2001 Elsevier science Ltd. All rights reserved.
Resumo:
BaxSr1-xTiO3 (x = 0.6) (BST) thin films were successfully prepared on a Pt(111)/TiO2/SiO2/Si(100) substrate by spin coating, using the polymeric precursor method. BST films with a perovskite single phase were obtained after heat treatment at 700 degrees C. The multilayer BST thin films had a granular structure will a grain size of approximately 60 nm. A 480-nm-thick film was obtained by carrying out five cycles of the spin-coating/heating process. Scanning electron microscopy and atomic force microscopy analyses showed that the thin films had a smooth, dense, crack-free surface with low surface roughness (3.6 nm). At room temperature and at a frequency of 100 kHz, the dielectric constant and the dissipation factor were, respectively, 748 and 0.042. The high dielectric constant value was due to the high microstructural quality and chemical homogeneity of the thin films obtained by the polymeric precursor method.
Resumo:
High-quality ABO(3)/LaNiO3 (A = Ph, Ca, Ba; B = Ti, Zr) hetero structures have been grown on LaAlO3 (1 0 0) substrate by the chemical solution deposition method and crystallized by a microwave oven technique. The structural, morphological and electric properties were characterized by means of X-ray diffraction (XRD), atomic force microscope (AFM), and dielectric and ferroelectric measurements. XRD patterns revealed single-phase polycrystalline and oriented thin films whose feature depends on the composition of the films. The AFM surface morphologies showed a smooth and crack-free surface with the average grain size ranging from 116 to 300 nm for both LaNiO3 electrode and the ferroelectric films. Dielectric measurements on these samples revealed dielectric constants as high as 1800 at frequency of 100 KHz. Such results showed that the combination of the chemical solution method with the microwave process provides a promising technique to grow high-quality thin films with good dielectric and ferroelectric properties. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Purpose: The purpose of the current study was to evaluate different approaches for bonding composite to the surface of yttria stabilized tetragonal zirconia polycrystal (Y-TZP) ceramics.Methods: One hundred Y-TZP blocks were embedded in acrylic resin, had the free surface polished, and were randomly divided into 10 groups (n=10). The tested repair approaches included four surface treatments: tribochemical silica coating (TBS), methacryloxydecyldihidrogenphosphate (MDP)-containing primer/silane, sandblasting, and metal/zirconia primer. Alcohol cleaning was used as a "no treatment" control. Surface treatment was followed by the application (or lack thereof) of an MDP-containing resin cement liner. Subsequently, a composite resin was applied to the ceramic surface using a cylindrical mold (4-mm diameter). After aging for 60 days in water storage, including 6000 thermal cycles, the specimens were submitted to a shear test. Analysis of variance and the Tukey test were used for statistical analyses (alpha=0.05).Results: Surface treatment was a statistically significant factor (F=85.42; p<0.0001). The application of the MDP-containing liner had no effect on bond strength (p=0.1017). TBS was the only treatment that had a significantly positive effect on bond strength after aging.Conclusion: Considering the evaluated approaches, TBS seems to be the best surface treatment for Y-TZP composite repairs. The use of an MDP-containing liner between the composite and Y-TZP surfaces is not effective.
Resumo:
In this work a computational method is presented to simulate the movements of vocal folds in three dimensions. The proposed model consists of a mesh free structure where each vertex is connected its neighbor through a group spring-damper. Forced oscillations were studied by time varying surface forces. The preliminary results using this model are similar with the literature and with the experimental stroboscopic observations of larynx. © 2006 IEEE.
Resumo:
The purpose of this study was to evaluate the effectiveness of subgingival application of Carisolv™ gel as an adjunctive therapy to scaling and root planing (SRP) on calculus removal compared to conventional instrumentation. Forty-five teeth requiring extraction due to severe periodontal disease were randomized to the following treatments: 1) SRP alone; 2) placebo gel + SRP; 3) Carisolv™ gel + SRP. Either test or placebo gel was applied subgingivally for 1 min and then the root were instrumented until a smooth and calculus-free surface was achieved. Instrumentation time and the number of strokes required were recorded. After extraction, the efficacy of root surface instrumentation was measured by percentage of remaining calculus. There was no statistically significant difference (p>0.05) between the treatment groups regarding either time required for instrumentation or the percentage of residual calculus. The subgingival application of Carisolv™ gel prior to SRP did not provide any additional benefit to root instrumentation compared to scaling and root planing alone.
Resumo:
The numerical model FUNWAVE was adapted in order to simulate the generation and propagation of ship waves to shore, including phenomena such as refraction, diffraction, currents and breaking of waves. Results are shown for Froude numbers equal to 0.8, 1.0 and 1.1, in order to verify the refraction of the wave pattern, identify breaking conditions and to investigate the wave generation scheme as a moving pressure at the free surface. © 2009 World Scientific Publishing Co. Pte. Ltd.
Resumo:
The numerical model FUNWAVE+Ship simulates the generation and propagation of ship waves to shore, including phenomena such as refraction, diffraction, currents and breaking of waves. The interaction of two wave trains, generated by ships moving either in the same direction at different speeds or in opposite directions, is studied. Focus is given to the wave orbital velocities and to the free surface pattern.
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Geociências e Meio Ambiente - IGCE