822 resultados para Free Cash Flow to Firm
Resumo:
General circulation models predict a rapid decrease in sea ice extent with concurrent increases in near surface air temperature and precipitation in the Arctic over the 21st century. This has led to suggestions that some Arctic land ice masses may experience an increase in accumulation due to enhanced evaporation from a seasonally sea ice free Arctic Ocean. To investigate the impact of this phenomenon on Greenland ice sheet climate and surface mass balance (SMB) a regional climate model, HadRM3, was used to force an insolation-temperature melt SMB model. A set of experiments designed to investigate the role of sea ice independently from sea surface temperature (SST) forcing are described. In the warmer and wetter SI + SST simulation Greenland experiences a 23% increase in winter SMB but 65% reduced summer SMB, resulting in a net decrease in the annual value. This study shows that sea ice decline contributes to the increased winter balance, causing 25% of the increase in winter accumulation; this is largest in eastern Greenland as the result of increased evaporation in the Greenland Sea. These results indicate that the seasonal cycle of Greenland's SMB will increase dramatically as global temperatures increase, with the largest changes in temperature and precipitation occurring in winter. This demonstrates that the accurate prediction of changes in sea ice cover is important for predicting Greenland SMB and ice sheet evolution.
Resumo:
Construction procurement is complex and there is a very wide range of options available to procurers. Inappropriate choices about how to procure may limit practical opportunities for innovation. In particular, traditional approaches to construction procurement set up many obstacles for technology suppliers to provide innovative solutions. This is because they are often employed as sub-contractors simply to provide and install equipment to specifications developed before the point at which they become involved in a project. A research team at the University of Reading has developed a procurement framework that comprehensively defines the various options open to procurers in a more fine-grained way than has been known in the past. This enables informed decisions that can establish tailor-made procurement approaches that take into account the needs of specific clients. It enables risk and reward structures to be aligned so that contracts and payment mechanisms are aligned precisely with what a client seeks to achieve. This is not a “one-size-fits-all” approach. Rather, it is an approach that enables informed decisions about how to organize individual procurements that are appropriate to particular circumstances, acknowledging that they differ for each client and for each procurement exercise. Within this context, performance-based contracting (PBC) is explored in terms of the different ways in which technology suppliers within constructed facilities might be encouraged and rewarded for the kinds of innovation sought by the ultimate clients. Examples from various industry sectors are presented, from public sector and from private sector, with a commentary about what they sought to achieve and the extent to which they were successful. The lessons from these examples are presented in terms of feasibility in relation to financial issues, governance, economics, strategic issues, contractual issues and cash flow issues for clients and for contractors. Further background documents and more detailed readings are provided in an appendix for those who wish to find out more.
Resumo:
Rapid rates of urbanization have resulted into increased concerns of urban environment. Amongst them, wind and thermal comfort levels for pedestrians have attracted research interest. In this regards, urban wind environment is seen as a crucial components that can lead to improved thermal comfort levels for pedestrian population. High rise building in modern urban setting causes high levels of turbulence that renders discomfort to pedestrians. Additionally, a higher frequency of high ris e buildings at a particular region acts as a shield against the wind flow to the lower buildings beyond them resulting into higher levels of discomfort to users or residents. Studies conducted on developing wind flow models using Computational Fluid Dynami cs (CFD) simulations have revealed improvement in interval to height ratios can results into improved wind flow within the simulation grid. However, high value and demand for land in urban areas renders expansion to be an impractical solution. Nonetheless, innovative utilization of architectural concepts can be imagined to improve the pedestrian comfort levels through improved wind permeability. This paper assesses the possibility of through-building gaps being a solution to improve pedestrian comfort levels.
Resumo:
We apply a numerical model of time-dependent ionospheric convection to two directly driven reconnection pulses during a 15-min interval of southward IMF on 26 November 2000. The model requires an input magnetopause reconnection rate variation, which is here derived from the observed variation in the upstream IMF clock angle, q. The reconnection rate is mapped to an ionospheric merging gap, the MLT extent of which is inferred from the Doppler-shifted Lyman-a emission on newly opened field lines, as observed by the FUV instrument on the IMAGE spacecraft. The model is used to reproduce a variety of features observed during this event: SuperDARN observations of the ionospheric convection pattern and transpolar voltage; FUV observations of the growth of patches of newly opened flux; FUVand in situ observations of the location of the Open-Closed field line Boundary (OCB) and a cusp ion step. We adopt a clock angle dependence of the magnetopause reconnection electric field, mapped to the ionosphere, of the form Enosin4(q/2) and estimate the peak value, Eno, by matching observed and modeled variations of both the latitude, LOCB, of the dayside OCB (as inferred from the equatorward edge of cusp proton emissions seen by FUV) and the transpolar voltage FPC (as derived using the mapped potential technique from SuperDARN HF radar data). This analysis also yields the time constant tOCB with which the open-closed boundary relaxes back toward its equilibrium configuration. For the case studied here, we find tOCB = 9.7 ± 1.3 min, consistent with previous inferences from the observed response of ionospheric flow to southward turnings of the IMF. The analysis confirms quantitatively the concepts of ionospheric flow excitation on which the model is based and explains some otherwise anomalous features of the cusp precipitation morphology.
Resumo:
The time scale of the response of the high-latitude dayside ionospheric flow to changes in the North-South component of the interplanetary magnetic field (IMF) has been investigated by examining the time delays between corresponding sudden changes. Approximately 40 h of simultaneous IMF and ionospheric flow data have been examined, obtained by the AMPTE-UKS and -IRM spacecraft and the EISCAT “Polar” experiment, respectively, in which 20 corresponding sudden changes have been identified. Ten of these changes were associated with southward turnings of the IMF, and 10 with northward turnings. It has been found that the corresponding flow changes occurred simultaneously over the whole of the “Polar” field-of-view, extending more than 2° in invariant latitude, and that the ionospheric response delay following northward turnings is the same as that following southward turnings, though the form of the response is different in the two cases. The shortest response time, 5.5 ± 3.2 min, is found in the early- to mid-afternoon sector, increasing to 9.5 ± 3.0 min in the mid-morning sector, and to 9.5 ± 3.1 min near to dusk. These times represent the delays in the appearance of perturbed flows in the “Polar” field-of-view following the arrival of IMF changes at the subsolar magnetopause. Overall, the results agree very well with those derived by Etemadi et al. (1988, Planet. Space Sci.36, 471) from a general cross-correlation analysis of the IMF Bz and “Polar” beam-swinging vector flow data.
Resumo:
Despite the generally positive contribution of supply management capabilities to firm performance their respective routines require more depth of assessment. Using the resource-based view we examine four routines bundles comprising ostensive and performative aspects of supply management capability – supply management integration, coordinated sourcing, collaboration management and performance assessment. Using structural equation modelling we measure supply management capability empirically as a second-order latent variable and estimate its effect on a series of financial and operational performance measures. The routines-based approach allows us to demonstrate a different, more fine-grained approach for assessing consistent bundles of homogeneous patterns of activity across firms. The results suggest supply management capability is formed of internally consistent routine bundles, which are significantly related to financial performance, mediated by operational performance. Our results confirm an indirect effect of firm performance for ‘core’ routines forming the architecture of a supply management capability. Supply management capability primarily improves the operational performance of the business, which is subsequently translated into improved financial performance. The study is significant for practice as it offers a different view about the face-valid rationale of supply management directly influencing firm financial performance. We confound this assumption, prompting caution when placing too much importance on directly assessing supply management capability using financial performance of the business.
Resumo:
Previous studies have shown that the human posterior cingulate contains a visual processing area selective for optic flow (CSv). However, other studies performed in both humans and monkeys have identified a somatotopic motor region at the same location (CMA). Taken together, these findings suggested the possibility that the posterior cingulate contains a single visuomotor integration region. To test this idea we used fMRI to identify both visual and motor areas of the posterior cingulate in the same brains and to test the activity of those regions during a visuomotor task. Results indicated that rather than a single visuomotor region the posterior cingulate contains adjacent but separate motor and visual regions. CSv lies in the fundus of the cingulate sulcus, while CMA lies in the dorsal bank of the sulcus, slightly superior in terms of stereotaxic coordinates. A surprising and novel finding was that activity in CSv was suppressed during the visuomotor task, despite the visual stimulus being identical to that used to localize the region. This may provide an important clue to the specific role played by this region in the utilization of optic flow to control self-motion.
Resumo:
Field observations of new particle formation and the subsequent particle growth are typically only possible at a fixed measurement location, and hence do not follow the temporal evolution of an air parcel in a Lagrangian sense. Standard analysis for determining formation and growth rates requires that the time-dependent formation rate and growth rate of the particles are spatially invariant; air parcel advection means that the observed temporal evolution of the particle size distribution at a fixed measurement location may not represent the true evolution if there are spatial variations in the formation and growth rates. Here we present a zero-dimensional aerosol box model coupled with one-dimensional atmospheric flow to describe the impact of advection on the evolution of simulated new particle formation events. Wind speed, particle formation rates and growth rates are input parameters that can vary as a function of time and location, using wind speed to connect location to time. The output simulates measurements at a fixed location; formation and growth rates of the particle mode can then be calculated from the simulated observations at a stationary point for different scenarios and be compared with the ‘true’ input parameters. Hence, we can investigate how spatial variations in the formation and growth rates of new particles would appear in observations of particle number size distributions at a fixed measurement site. We show that the particle size distribution and growth rate at a fixed location is dependent on the formation and growth parameters upwind, even if local conditions do not vary. We also show that different input parameters used may result in very similar simulated measurements. Erroneous interpretation of observations in terms of particle formation and growth rates, and the time span and areal extent of new particle formation, is possible if the spatial effects are not accounted for.
Resumo:
In various attempts to relate the behaviour of highly-elastic liquids in complex flows to their rheometrical behaviour, obvious candidates for study have been the variation of shear viscosity with shear rate, the two normal stress differences N(1) and N(2), especially N(1), the extensional viscosity, and the dynamic moduli G` and G ``. In this paper, we shall confine attention to `constant-viscosity` Boger fluids, and, accordingly, we shall limit attention to N(1), eta(E), G` and G ``. We shall concentrate on the ""splashing"" problem (particularly that which arises when a liquid drop falls onto the free surface of the same liquid). Modern numerical techniques are employed to provide the theoretical predictions. We show that high eta(E) can certainly reduce the height of the so-called Worthington jet, thus confirming earlier suggestions, but other rheometrical influences (steady and transient) can also have a role to play and the overall picture may not be as clear as it was once envisaged. We argue that this is due in the main to the fact that splashing is a manifestly unsteady flow. To confirm this proposition, we obtain numerical simulations for the linear Jeffreys model. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This paper describes the development of an implicit finite difference method for solving transient three-dimensional incompressible free surface flows. To reduce the CPU time of explicit low-Reynolds number calculations, we have combined a projection method with an implicit technique for treating the pressure on the free surface. The projection method is employed to uncouple the velocity and the pressure fields, allowing each variable to be solved separately. We employ the normal stress condition on the free surface to derive an implicit technique for calculating the pressure at the free surface. Numerical results demonstrate that this modification is essential for the construction of methods that are more stable than those provided by discretizing the free surface explicitly. In addition, we show that the proposed method can be applied to viscoelastic fluids. Numerical results include the simulation of jet buckling and extrudate swell for Reynolds numbers in the range [0.01, 0.5]. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
In order to validate the Geant4 toolkit for dosimetry applications, simulations were performed to calculate conversion coefficients h(10, alpha) from air kerma free-in-air to personal dose equivalent Hp(10, a). The simulations consisted of two parts: the production of X-rays with radiation qualities of narrow and wide spectra, and the interaction of radiation with ICRU tissue-equivalent and ISO water slab phantoms. The half-value layers of the X-ray spectra obtained by simulation were compared with experimental results. Mean energy, spectral resolution, half-value layers and conversion coefficients were compared with ISO reference values. The good agreement between results from simulation and reference data shows that the Geant4 is suitable for dosimetry applications which involve photons with energies in the range of ten to a few hundreds of keV. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Despite rapid economic growth and poverty reduction, inequality in Chile has remained high and remarkably constant over the last 20 years, prompting academic and public interest in the subject. Due to data limitations, however, research on inequality in Chile has concentrated on the national and regional levels. The impact of cash subsidies to poor households on local inequality is thus not well understood. Using poverty-mapping methods to asses this impact, we find heterogeneity in the effectiveness of regional and municipal governments in reducing inequality via poverty-reduction transfers, suggesting that alternative targeting regimes may complement current practice in aiding the poor.
Resumo:
O trabalho procura mapear e interpretar o processo de formação de caixa decompondo e analisando as atividades que contribuem para liberar ou retirar recursos do fluxo de caixa. Procura também avançar no problema da determinação do nível ótimo de liquidez que deve ser mantido pelas empresas.
Resumo:
O objetivo principal deste trabalho é a criação de um modelo teórico para a mensuração do fluxo de caixa em risco (CFaR) em instituições não financeiras, e sua aplicação na indústria de óleo e gás. Através deste modelo a empresa deve ser capaz de observar, através de seu fluxo de caixa, a probabilidade de dispor ou não de recursos para honrar seus compromissos. Deve-se analisar os métodos utilizados para gerenciamento de risco (VaR, CFaR e EaR) e aplicar um modelo de CFaR. Após a aplicação desta métrica, pode-se analisar os resultados encontrados. Será utilizado como base para o modelo proposto um paper publicado no Jornal of Applied Corporate Finance intitulado “Exposure-Based Cash-Flow-at-Risk: An Alternative to VaR for Industrial Companies”. Foi observado que o CFaR vem ganhando mais popularidade na gestão de risco das grandes empresas, demonstrando a exposição ao risco destas empresas e viabilizando a uma melhor tomada de decisão como utilizar o hedge de forma mais eficiente.
Resumo:
Este trabalho teve como objetivo incluir flexibilidades gerenciais (tais como técnicas de injeção de gás e água) na avaliação de reservatórios. Concluimos que esta técnicas podem aumentar o valor dos reservatórios em até 25% segundo a teoria de opções reais. A principal vantagem da metodologia de teoria de opções face a tradicional técnica de fluxo de caixa descontado é levar em conta as questões operacionais da indústria do petróleo. Utilizamos dois modelos clássicos para a precificação de reservatórios de petróleo, e aplicamos uma análise de sensibilidade para determinarmos quais fatores são mais relevantes no seu valor econômico. Como era de se esperar em ambos os modelos, o tempo de concessão, bem como a taxa de convenience e/ou dividend yield foram os fatores mais importantes.