952 resultados para Frederick III, Elector of Saxony, 1463-1525.
Resumo:
In the past 2009/10 academic year, we took steps towards introduction of active methodologies, from a multidisciplinar approach, into a conventional lecture-based Dental Education program. We consolidated these practices in the current 2010/11 year, already within a new Bologna-adapted scheme. Transition involved (i) critical assessment of the limitations of traditional teaching (ii) identification of specific learning topics allowing for integration of contents, (iii) implementation of student-centred learning activities in old curricular plans (iv) assessment of students' satisfaction and perceived learning outcomes, (v) implementation of these changes in new Bologna-adapted curricula
Resumo:
L'objectiu d'aquest estudi és el d'investigar sobre l'ús de matèria orgànica per part dels fongs i bacteris que colonitzen diferents substrats bentònics en rius Mediterranis i analitzar l'efecte dels factors ambientals i antròpics sobre l'estabilitat estructural i funcional de les comunitats del biofilm. La metodologia emprada en aquest estudi consisteix en: i) anàlisi de la biomassa bacteriana i fúngica, ii) anàlisi de la composició de les comunitats bentòniques (identificació d'hifomicets aquàtics i anàlisi del 16S rDNA bacterià), i iii) anàlisi de l'activitat enzimàtica extracel·lular relacionada amb el reciclatge de matèria orgànica en rius.
Resumo:
The length and time scales accessible to optical tweezers make them an ideal tool for the examination of colloidal systems. Embedded high-refractive-index tracer particles in an index-matched hard sphere suspension provide 'handles' within the system to investigate the mechanical behaviour. Passive observations of the motion of a single probe particle give information about the linear response behaviour of the system, which can be linked to the macroscopic frequency-dependent viscous and elastic moduli of the suspension. Separate 'dragging' experiments allow observation of a sample's nonlinear response to an applied stress on a particle-by particle basis. Optical force measurements have given new data about the dynamics of phase transitions and particle interactions; an example in this study is the transition from liquid-like to solid-like behaviour, and the emergence of a yield stress and other effects attributable to nearest-neighbour caging effects. The forces needed to break such cages and the frequency of these cage breaking events are investigated in detail for systems close to the glass transition.
Resumo:
The International Citicoline Trial in acUte Stroke is a sequential phase III study of the use of the drug citicoline in the treatment of acute ischaemic stroke, which was initiated in 2006 in 56 treatment centres. The primary objective of the trial is to demonstrate improved recovery of patients randomized to citicoline relative to those randomized to placebo after 12 weeks of follow-up. The primary analysis will take the form of a global test combining the dichotomized results of assessments on three well-established scales: the Barthel Index, the modified Rankin scale and the National Institutes of Health Stroke Scale. This approach was previously used in the analysis of the influential National Institute of Neurological Disorders and Stroke trial of recombinant tissue plasminogen activator in stroke. The purpose of this paper is to describe how this trial was designed, and in particular how the simultaneous objectives of taking into account three assessment scales, performing a series of interim analyses and conducting treatment allocation and adjusting the analyses to account for prognostic factors, including more than 50 treatment centres, were addressed. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
The new erbium(III) complex of picolinic acid (Hpic), ["Bu4N][Er(pic)(4)].5.5H(2)O, was synthesized and the crystal structure determined by single-crystal X-ray diffraction. The compound was further characterized using IR, Raman, H-1 NMR and elemental analysis. The picolinate ligands (pic(-)) are coordinated through N,O-chelation to the erbium cations, as shown by X-ray diffraction and spectroscopic results, leading to an eight coordinate complex. Photoluminescence measurements were performed for this compound which exhibits infrared emission. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The ability of human postprandial triacylglycerol-rich lipoproteins (TRLs), isolated after meals enriched in saturated fatty acids (SFAs), n-6 PUFAs, and MUFAs, to inhibit the uptake of I-125-labeled LDL by the LDL receptor was investigated in HepG2 cells. Addition of TRLs resulted in a dose-dependent inhibition of heparin-releasable binding, cell-associated radioactivity, and degradation products of I-125-labeled LDL (P < 0.001). SFA-rich Svedberg flotation rate (S-f) 60-400 resulted in significantly greater inhibition of cell-associated radioactivity than PUFA-rich particles (P = 0.016) and total uptake of I-125-labeled LDL compared with PUFA- and MUFA-rich particles (P = 0.02). Normalization of the apolipoprotein (apo)E but not apoC-III content of the TRLs removed the effect of meal fatty acid composition, and addition of an anti-apoE antibody reversed the inhibitory effect of TRLs on the total uptake of I-125-labeled LDL. Real time RT-PCR showed that the SFA-rich Sf 60-400 increased the expression of genes involved in hepatic lipid synthesis (P < 0.05) and decreased the expression of the LDL receptor-related protein 1 compared with MUFAs (P = 0.008). In conclusion, these findings suggest an alternative or additional mechanism whereby acute fat ingestion can influence LDL clearance via competitive apoE-dependent effects of TRL on the LDL receptor.-Jackson, K. G., V. Maitin, D. S. Leake, P. Yaqoob, and C. M. Williams. Saturated fat-induced changes in Sf 60 400 particle composition reduces uptake of LDL by HepG2 cells.
Resumo:
The health risks associated with the inhalation or ingestion of cadmium are well documented([1,2]). During the past 18 years, EU legislation has steadily been introduced to restrict its use, leaving a requirement for the development of replacement materials. This paper looks at possible alternatives to various cadmium II-VI dielectric compounds used in the deposition of optical thin-films for various opto-electronic devices. Application areas of particular interest are for infrared multilayer interference filter fabrication and solar cell industries, where cadmium-based coatings currently find widespread use. The results of single and multilayer designs comprising CdTe, CdS, CdSe and PbTe deposited onto group IV and II-VI materials as interference filters for the mid-IR region are presented. Thin films of SnN, SnO2, SnS and SnSe are fabricated by plasma assisted CVD, reactive RF sputtering and thermal evaporation. Examination of these films using FTIR spectroscopy, SEM, EDX analysis and optical characterisation methods provide details of material dispersion, absorption, composition, refractive index, energy band gap and layer thicknesses. The optimisation of deposition parameters in order to synthesise coatings with similar optical and semiconductor properties as those containing cadmium has been investigated. Results of environmental, durability and stability trials are also presented.
Resumo:
This paper describes the crowd image analysis challenge that forms part of the PETS 2009 workshop. The aim of this challenge is to use new or existing systems for i) crowd count and density estimation, ii) tracking of individual(s) within a crowd, and iii) detection of separate flows and specific crowd events, in a real-world environment. The dataset scenarios were filmed from multiple cameras and involve multiple actors.
Resumo:
The subcellular localization of transmissible gastroenteritis virus (TGEV) and mouse hepatitis virus (MHV) (group I and group II coronaviruses, respectively) nucleoproteins (N proteins) were examined by confocal microscopy. The proteins were shown to localize either to the cytoplasm alone or to the cytoplasm and a structure in the nucleus. This feature was confirmed to be the nucleolus by using specific antibodies to nucleolin, a major component of the nucleolus, and by confocal microscopy to image sections through a cell expressing N protein. These findings are consistent with our previous report for infectious bronchitis virus (group III coronavirus) (J. A. Hiscox et al., J. Virol. 75:506-512, 2001), indicating that nucleolar localization of the N protein is a common feature of the coronavirus family and is possibly of functional significance. Nucleolar localization signals were identified in the domain III region of the N protein from all three coronavirus groups, and this suggested that transport of N protein to the nucleus might be an active process. In addition, our results suggest that the N protein might function to disrupt cell division. Thus, we observed that approximately 30% of cells transfected with the N protein appeared to be undergoing cell division. The most likely explanation for this is that the N protein induced a cell cycle delay or arrest, most likely in the G2/M phase. In a fraction of transfected cells expressing coronavirus N proteins, we observed multinucleate cells and dividing cells with nucleoli (which are only present during interphase). These findings are consistent with the possible inhibition of cytokinesis in these cells.
Resumo:
SCIENTIFIC SUMMARY Globally averaged total column ozone has declined over recent decades due to the release of ozone-depleting substances (ODSs) into the atmosphere. Now, as a result of the Montreal Protocol, ozone is expected to recover from the effects of ODSs as ODS abundances decline in the coming decades. However, a number of factors in addition to ODSs have led to and will continue to lead to changes in ozone. Discriminating between the causes of past and projected ozone changes is necessary, not only to identify the progress in ozone recovery from ODSs, but also to evaluate the effectiveness of climate and ozone protection policy options. Factors Affecting Future Ozone and Surface Ultraviolet Radiation • At least for the next few decades, the decline of ODSs is expected to be the major factor affecting the anticipated increase in global total column ozone. However, several factors other than ODS will affect the future evolution of ozone in the stratosphere. These include changes in (i) stratospheric circulation and temperature due to changes in long-lived greenhouse gas (GHG) abundances, (ii) stratospheric aerosol loading, and (iii) source gases of highly reactive stratospheric hydrogen and nitrogen compounds. Factors that amplify the effects of ODSs on ozone (e.g., stratospheric aerosols) will likely decline in importance as ODSs are gradually eliminated from the atmosphere. • Increases in GHG emissions can both positively and negatively affect ozone. Carbon dioxide (CO2)-induced stratospheric cooling elevates middle and upper stratospheric ozone and decreases the time taken for ozone to return to 1980 levels, while projected GHG-induced increases in tropical upwelling decrease ozone in the tropical lower stratosphere and increase ozone in the extratropics. Increases in nitrous oxide (N2O) and methane (CH4) concentrations also directly impact ozone chemistry but the effects are different in different regions. • The Brewer-Dobson circulation (BDC) is projected to strengthen over the 21st century and thereby affect ozone amounts. Climate models consistently predict an acceleration of the BDC or, more specifically, of the upwelling mass flux in the tropical lower stratosphere of around 2% per decade as a consequence of GHG abundance increases. A stronger BDC would decrease the abundance of tropical lower stratospheric ozone, increase poleward transport of ozone, and could reduce the atmospheric lifetimes of long-lived ODSs and other trace gases. While simulations showing faster ascent in the tropical lower stratosphere to date are a robust feature of chemistry-climate models (CCMs), this has not been confirmed by observations and the responsible mechanisms remain unclear. • Substantial ozone losses could occur if stratospheric aerosol loading were to increase in the next few decades, while halogen levels are high. Stratospheric aerosol increases may be caused by sulfur contained in volcanic plumes entering the stratosphere or from human activities. The latter might include attempts to geoengineer the climate system by enhancing the stratospheric aerosol layer. The ozone losses mostly result from enhanced heterogeneous chemistry on stratospheric aerosols. Enhanced aerosol heating within the stratosphere also leads to changes in temperature and circulation that affect ozone. • Surface ultraviolet (UV) levels will not be affected solely by ozone changes but also by the effects of climate change and by air quality change in the troposphere. These tropospheric effects include changes in clouds, tropospheric aerosols, surface reflectivity, and tropospheric sulfur dioxide (SO2) and nitrogen dioxide (NO2). The uncertainties in projections of these factors are large. Projected increases in tropospheric ozone are more certain and may lead to reductions in surface erythemal (“sunburning”) irradiance of up to 10% by 2100. Changes in clouds may lead to decreases or increases in surface erythemal irradiance of up to 15% depending on latitude. Expected Future Changes in Ozone Full ozone recovery from the effects of ODSs and return of ozone to historical levels are not synonymous. In this chapter a key target date is chosen to be 1980, in part to retain the connection to previous Ozone Assessments. Noting, however, that decreases in ozone may have occurred in some regions of the atmosphere prior to 1980, 1960 return dates are also reported. The projections reported on in this chapter are taken from a recent compilation of CCM simulations. The ozone projections, which also form the basis for the UV projections, are limited in their representativeness of possible futures since they mostly come from CCM simulations based on a single GHG emissions scenario (scenario A1B of Emissions Scenarios. A Special Report of Working Group III of the Intergovernmental Panel on Climate Change, Cambridge University Press, 2000) and a single ODS emissions scenario (adjusted A1 of the previous (2006) Ozone Assessment). Throughout this century, the vertical, latitudinal, and seasonal structure of the ozone distribution will be different from what it was in 1980. For this reason, ozone changes in different regions of the atmosphere are considered separately. • The projections of changes in ozone and surface clear-sky UV are broadly consistent with those reported on in the 2006 Assessment. • The capability of making projections and attribution of future ozone changes has been improved since the 2006 Assessment. Use of CCM simulations from an increased number of models extending through the entire period of ozone depletion and recovery from ODSs (1960–2100) as well as sensitivity simulations have allowed more robust projections of long-term changes in the stratosphere and of the relative contributions of ODSs and GHGs to those changes. • Global annually averaged total column ozone is projected to return to 1980 levels before the middle of the century and earlier than when stratospheric halogen loading returns to 1980 levels. CCM projections suggest that this early return is primarily a result of GHG-induced cooling of the upper stratosphere because the effects of circulation changes on tropical and extratropical ozone largely cancel. Global (90°S–90°N) annually averaged total column ozone will likely return to 1980 levels between 2025 and 2040, well before the return of stratospheric halogens to 1980 levels between 2045 and 2060. • Simulated changes in tropical total column ozone from 1960 to 2100 are generally small. The evolution of tropical total column ozone in models depends on the balance between upper stratospheric increases and lower stratospheric decreases. The upper stratospheric increases result from declining ODSs and a slowing of ozone destruction resulting from GHG-induced cooling. Ozone decreases in the lower stratosphere mainly result from an increase in tropical upwelling. From 1960 until around 2000, a general decline is simulated, followed by a gradual increase to values typical of 1980 by midcentury. Thereafter, although total column ozone amounts decline slightly again toward the end of the century, by 2080 they are no longer expected to be affected by ODSs. Confidence in tropical ozone projections is compromised by the fact that simulated decreases in column ozone to date are not supported by observations, suggesting that significant uncertainties remain. • Midlatitude total column ozone is simulated to evolve differently in the two hemispheres. Over northern midlatitudes, annually averaged total column ozone is projected to return to 1980 values between 2015 and 2030, while for southern midlatitudes the return to 1980 values is projected to occur between 2030 and 2040. The more rapid return to 1980 values in northern midlatitudes is linked to a more pronounced strengthening of the poleward transport of ozone due to the effects of increased GHG levels, and effects of Antarctic ozone depletion on southern midlatitudes. By 2100, midlatitude total column ozone is projected to be above 1980 values in both hemispheres. • October-mean Antarctic total column ozone is projected to return to 1980 levels after midcentury, later than in any other region, and yet earlier than when stratospheric halogen loading is projected to return to 1980 levels. The slightly earlier return of ozone to 1980 levels (2045–2060) results primarily from upper stratospheric cooling and resultant increases in ozone. The return of polar halogen loading to 1980 levels (2050–2070) in CCMs is earlier than in empirical models that exclude the effects of GHG-induced changes in circulation. Our confidence in the drivers of changes in Antarctic ozone is higher than for other regions because (i) ODSs exert a strong influence on Antarctic ozone, (ii) the effects of changes in GHG abundances are comparatively small, and (iii) projections of ODS emissions are more certain than those for GHGs. Small Antarctic ozone holes (areas of ozone <220 Dobson units, DU) could persist to the end of the 21st century. • March-mean Arctic total column ozone is projected to return to 1980 levels two to three decades before polar halogen loading returns to 1980 levels, and to exceed 1980 levels thereafter. While CCM simulations project a return to 1980 levels between 2020 and 2035, most models tend not to capture observed low temperatures and thus underestimate present-day Arctic ozone loss such that it is possible that this return date is biased early. Since the strengthening of the Brewer-Dobson circulation through the 21st century leads to increases in springtime Arctic column ozone, by 2100 Arctic ozone is projected to lie well above 1960 levels. Uncertainties in Projections • Conclusions dependent on future GHG levels are less certain than those dependent on future ODS levels since ODS emissions are controlled by the Montreal Protocol. For the six GHG scenarios considered by a few CCMs, the simulated differences in stratospheric column ozone over the second half of the 21st century are largest in the northern midlatitudes and the Arctic, with maximum differences of 20–40 DU between the six scenarios in 2100. • There remain sources of uncertainty in the CCM simulations. These include the use of prescribed ODS mixing ratios instead of emission fluxes as lower boundary conditions, the range of sea surface temperatures and sea ice concentrations, missing tropospheric chemistry, model parameterizations, and model climate sensitivity. • Geoengineering schemes for mitigating climate change by continuous injections of sulfur-containing compounds into the stratosphere, if implemented, would substantially affect stratospheric ozone, particularly in polar regions. Ozone losses observed following large volcanic eruptions support this prediction. However, sporadic volcanic eruptions provide limited analogs to the effects of continuous sulfur emissions. Preliminary model simulations reveal large uncertainties in assessing the effects of continuous sulfur injections. Expected Future Changes in Surface UV. While a number of factors, in addition to ozone, affect surface UV irradiance, the focus in this chapter is on the effects of changes in stratospheric ozone on surface UV. For this reason, clear-sky surface UV irradiance is calculated from ozone projections from CCMs. • Projected increases in midlatitude ozone abundances during the 21st century, in the absence of changes in other factors, in particular clouds, tropospheric aerosols, and air pollutants, will result in decreases in surface UV irradiance. Clear-sky erythemal irradiance is projected to return to 1980 levels on average in 2025 for the northern midlatitudes, and in 2035 for the southern midlatitudes, and to fall well below 1980 values by the second half of the century. However, actual changes in surface UV will be affected by a number of factors other than ozone. • In the absence of changes in other factors, changes in tropical surface UV will be small because changes in tropical total column ozone are projected to be small. By the middle of the 21st century, the model projections suggest surface UV to be slightly higher than in the 1960s, very close to values in 1980, and slightly lower than in 2000. The projected decrease in tropical total column ozone through the latter half of the century will likely result in clear-sky surface UV remaining above 1960 levels. Average UV irradiance is already high in the tropics due to naturally occurring low total ozone columns and high solar elevations. • The magnitude of UV changes in the polar regions is larger than elsewhere because ozone changes in polar regions are larger. For the next decades, surface clear-sky UV irradiance, particularly in the Antarctic, will continue to be higher than in 1980. Future increases in ozone and decreases in clear-sky UV will occur at slower rates than those associated with the ozone decreases and UV increases that occurred before 2000. In Antarctica, surface clear-sky UV is projected to return to 1980 levels between 2040 and 2060, while in the Arctic this is projected to occur between 2020 and 2030. By 2100, October surface clear-sky erythemal irradiance in Antarctica is likely to be between 5% below to 25% above 1960 levels, with considerable uncertainty. This is consistent with multi-model-mean October Antarctic total column ozone not returning to 1960 levels by 2100. In contrast, by 2100, surface clear-sky UV in the Arctic is projected to be 0–10% below 1960 levels.
Resumo:
The dispersion of a point-source release of a passive scalar in a regular array of cubical, urban-like, obstacles is investigated by means of direct numerical simulations. The simulations are conducted under conditions of neutral stability and fully rough turbulent flow, at a roughness Reynolds number of Reτ = 500. The Navier–Stokes and scalar equations are integrated assuming a constant rate release from a point source close to the ground within the array. We focus on short-range dispersion, when most of the material is still within the building canopy. Mean and fluctuating concentrations are computed for three different pressure gradient directions (0◦ , 30◦ , 45◦). The results agree well with available experimental data measured in a water channel for a flow angle of 0◦ . Profiles of mean concentration and the three-dimensional structure of the dispersion pattern are compared for the different forcing angles. A number of processes affecting the plume structure are identified and discussed, including: (i) advection or channelling of scalar down ‘streets’, (ii) lateral dispersion by turbulent fluctuations and topological dispersion induced by dividing streamlines around buildings, (iii) skewing of the plume due to flow turning with height, (iv) detrainment by turbulent dispersion or mean recirculation, (v) entrainment and release of scalar in building wakes, giving rise to ‘secondary sources’, (vi) plume meandering due to unsteady turbulent fluctuations. Finally, results on relative concentration fluctuations are presented and compared with the literature for point source dispersion over flat terrain and urban arrays. Keywords Direct numerical simulation · Dispersion modelling · Urban array
Resumo:
Starch is the most widespread and abundant storage carbohydrate in crops and its production is critical to both crop yield and quality. As regards the starch content in the seeds of crop plants, there are distinct difference between grasses (Poaceae) and dicots. However, few studies have described the evolutionary pattern of genes in the starch biosynthetic pathway in these two groups of plants. In this study, therefore, an attempt was made to compare the evolutionary rate, gene duplication and selective pattern of the key genes involved in this pathway between the two groups, using five grasses and five dicots as materials. The results showed (i) distinct differences in patterns of gene duplication and loss between grasses and dicots; duplication in grasses mainly occurred prior to the divergence of grasses, whereas duplication mostly occurred in individual species within the dicots; there is less gene loss in grasses than in dicots; (ii) a considerably higher evolutionary rate in grasses than in dicots in most gene families analyzed; (iii) evidence of a different selective pattern between grasses and dicots; positive selection may have occurred asymmetrically in grasses in some gene families, e.g. AGPase small subunit. Therefore, we deduced that gene duplication contributes to, and a higher evolutionary rate is associated with, the higher starch content in grasses. In addition, two novel aspects of the evolution of the starch biosynthetic pathway were observed.
Resumo:
Two new Mn(III) complexes of formulas [MnL1(N-3)(OMe)](2) (1) and [MnL2(N-3)(2)](n) (2) have been synthesized by using two tridentate NNO-donor Schiff base ligands HL1{(2-[(3-methylaminoethylimino)-methyl]-phenol)} and HL2 {(2-[1-(2-dimethylaminoethylimino)methyl]-phenol)}, respectively. Substitution of the H atom on the secondary amine group of the N-methyldiamine fragment of the Schiff base by a methyl group leads to a drastic structural change from a methoxido-bridged dimer (1) to a single mu(1,3)-azido-bridged 1D helical polymer (2). Both complexes were characterized by single-crystal X-ray structural analyses and variable-temperature magnetic susceptibility measurements. The magnetic properties of compound I show the presence of weak ferromagnetic exchange interactions mediated by double methoiddo bridges (J = 0.95 cm(-1)). Compound 2 shows the existence of a weak antiferromangetic coupling along the chain (J = -8.5 cm(-1)) through the single mu(1,3)-N-3 bridge with a spin canting that leads to a long-range antiferromagnetic order at T-c approximate to 9.3 K and a canting leading to a weak ferromagnetic long-range order at T-c approximate to 8.5 K. It also exibits metamagnetic behavior at low temperatures with a critical field of ca.1.2 T due to the weak antiferromagnetic interchain interactions that appear in the canted ordered phase.
Resumo:
We present a well-dated, high-resolution, ~ 45 kyr lake sediment record reflecting regional temperature and precipitation change in the continental interior of the Southern Hemisphere (SH) tropics of South America. The study site is Laguna La Gaiba (LLG), a large lake (95 km2) hydrologically-linked to the Pantanal, an immense, seasonally-flooded basin and the world's largest tropical wetland (135,000 km2). Lake-level changes at LLG are therefore reflective of regional precipitation. We infer past fluctuations in precipitation at this site through changes in: i) pollen-inferred extent of flood-tolerant forest; ii) relative abundance of terra firme humid tropical forest versus seasonally-dry tropical forest pollen types; and iii) proportions of deep- versus shallow-water diatoms. A probabilistic model, based on plant family and genus climatic optima, was used to generate quantitative estimates of past temperature from the fossil pollen data. Our temperature reconstruction demonstrates rising temperature (by 4 °C) at 19.5 kyr BP, synchronous with the onset of deglacial warming in the central Andes, strengthening the evidence that climatic warming in the SH tropics preceded deglacial warming in the Northern Hemisphere (NH) by at least 5 kyr. We provide unequivocal evidence that the climate at LLG was markedly drier during the last glacial period (45.0–12.2 kyr BP) than during the Holocene, contrasting with SH tropical Andean and Atlantic records that demonstrate a strengthening of the South American summer monsoon during the global Last Glacial Maximum (~ 21 kyr BP), in tune with the ~ 20 kyr precession orbital cycle. Holocene climate conditions occurred as early as 12.8–12.2 kyr BP, when increased precipitation in the Pantanal catchment caused heightened flooding and rising lake levels in LLG. In contrast to this strong geographic variation in LGM precipitation across the continent, expansion of tropical dry forest between 10 and 3 kyr BP at LLG strengthens the body of evidence for widespread early–mid Holocene drought across tropical South America.