993 resultados para Fractional-order
Resumo:
Cosmic microwave background (CMB) radiation is the imprint from an early stage of the Universe and investigation of its properties is crucial for understanding the fundamental laws governing the structure and evolution of the Universe. Measurements of the CMB anisotropies are decisive to cosmology, since any cosmological model must explain it. The brightness, strongest at the microwave frequencies, is almost uniform in all directions, but tiny variations reveal a spatial pattern of small anisotropies. Active research is being developed seeking better interpretations of the phenomenon. This paper analyses the recent data in the perspective of fractional calculus. By taking advantage of the inherent memory of fractional operators some hidden properties are captured and described.
Resumo:
Glasgow Mathematical Journal, nº 47 (2005), pg. 413-424
Resumo:
In this paper we address an order processing optimization problem known as minimization of open stacks (MOSP). We present an integer pro gramming model, based on the existence of a perfect elimination scheme in interval graphs, which finds an optimal sequence for the costumers orders.
Resumo:
Semigroup Forum vol. 68 (2004), p. 335–356
Resumo:
Order picking consists in retrieving products from storage locations to satisfy independent orders from multiple customers. It is generally recognized as one of the most significant activities in a warehouse (Koster et al, 2007). In fact, order picking accounts up to 50% (Frazelle, 2001) or even 80% (Van den Berg, 1999) of the total warehouse operating costs. The critical issue in today’s business environment is to simultaneously reduce the cost and increase the speed of order picking. In this paper, we address the order picking process in one of the Portuguese largest companies in the grocery business. This problem was proposed at the 92nd European Study Group with Industry (ESGI92). In this setting, each operator steers a trolley on the shop floor in order to select items for multiple customers. The objective is to improve their grocery e-commerce and bring it up to the level of the best international practices. In particular, the company wants to improve the routing tasks in order to decrease distances. For this purpose, a mathematical model for a faster open shop picking was developed. In this paper, we describe the problem, our proposed solution as well as some preliminary results and conclusions.
Resumo:
Communications in Algebra
Resumo:
European Master Human Rights and Democratisation
Resumo:
Fractional dynamics is a growing topic in theoretical and experimental scientific research. A classical problem is the initialization required by fractional operators. While the problem is clear from the mathematical point of view, it constitutes a challenge in applied sciences. This paper addresses the problem of initialization and its effect upon dynamical system simulation when adopting numerical approximations. The results are compatible with system dynamics and clarify the formulation of adequate values for the initial conditions in numerical simulations.
Resumo:
The local fractional Poisson equations in two independent variables that appear in mathematical physics involving the local fractional derivatives are investigated in this paper. The approximate solutions with the nondifferentiable functions are obtained by using the local fractional variational iteration method.
Resumo:
This paper studies several topics related with the concept of “fractional” that are not directly related with Fractional Calculus, but can help the reader in pursuit new research directions. We introduce the concept of non-integer positional number systems, fractional sums, fractional powers of a square matrix, tolerant computing and FracSets, negative probabilities, fractional delay discrete-time linear systems, and fractional Fourier transform.
Resumo:
This paper starts by introducing the Grünwald–Letnikov derivative, the Riesz potential and the problem of generalizing the Laplacian. Based on these ideas, the generalizations of the Laplacian for 1D and 2D cases are studied. It is presented as a fractional version of the Cauchy–Riemann conditions and, finally, it is discussed with the n-dimensional Laplacian.
Resumo:
This paper applies Pseudo Phase Plane (PPP) and Fractional Calculus (FC) mathematical tools for modeling world economies. A challenging global rivalry among the largest international economies began in the early 1970s, when the post-war prosperity declined. It went on, up to now. If some worrying threatens may exist actually in terms of possible ambitious military aggression, invasion, or hegemony, countries’ PPP relative positions can tell something on the current global peaceful equilibrium. A global political downturn of the USA on global hegemony in favor of Asian partners is possible, but can still be not accomplished in the next decades. If the 1973 oil chock has represented the beginning of a long-run recession, the PPP analysis of the last four decades (1972–2012) does not conclude for other partners’ global dominance (Russian, Brazil, Japan, and Germany) in reaching high degrees of similarity with the most developed world countries. The synergies of the proposed mathematical tools lead to a better understanding of the dynamics underlying world economies and point towards the estimation of future states based on the memory of each time series.
Resumo:
The calculation of fractional derivatives is an important topic in scientific research. While formal definitions are clear from the mathematical point of view, they pose limitations in applied sciences that have not been yet tackled. This paper addresses the problem of obtaining left and right side derivatives when adopting numerical approximations. The results reveal the relationship between the resulting distinct values for different fractional orders and types of signals.
Resumo:
This paper discusses the concepts underlying the formulation of operators capable of being interpreted as fractional derivatives or fractional integrals. Two criteria for required by a fractional operator are formulated. The Grünwald–Letnikov, Riemann–Liouville and Caputo fractional derivatives and the Riesz potential are accessed in the light of the proposed criteria. A Leibniz rule is also obtained for the Riesz potential.
Resumo:
In this paper we present the operational matrices of the left Caputo fractional derivative, right Caputo fractional derivative and Riemann–Liouville fractional integral for shifted Legendre polynomials. We develop an accurate numerical algorithm to solve the two-sided space–time fractional advection–dispersion equation (FADE) based on a spectral shifted Legendre tau (SLT) method in combination with the derived shifted Legendre operational matrices. The fractional derivatives are described in the Caputo sense. We propose a spectral SLT method, both in temporal and spatial discretizations for the two-sided space–time FADE. This technique reduces the two-sided space–time FADE to a system of algebraic equations that simplifies the problem. Numerical results carried out to confirm the spectral accuracy and efficiency of the proposed algorithm. By selecting relatively few Legendre polynomial degrees, we are able to get very accurate approximations, demonstrating the utility of the new approach over other numerical methods.