718 resultados para Fpga
Resumo:
High performance video standards use prediction techniques to achieve high picture quality at low bit rates. The type of prediction decides the bit rates and the image quality. Intra Prediction achieves high video quality with significant reduction in bit rate. This paper present an area optimized architecture for Intra prediction, for H.264 decoding at HDTV resolution with a target of achieving 60 fps. The architecture was validated on Virtex-5 FPGA based platform. The architecture achieves a frame rate of 64 fps. The architecture is based on multi-level memory hierarchy to reduce latency and ensure optimum resources utilization. It removes redundancy by reusing same functional blocks across different modes. The proposed architecture uses only 13% of the total LUTs available on the Xilinx FPGA XC5VLX50T.
Resumo:
Regular Expressions are generic representations for a string or a collection of strings. This paper focuses on implementation of a regular expression matching architecture on reconfigurable fabric like FPGA. We present a Nondeterministic Finite Automata based implementation with extended regular expression syntax set compared to previous approaches. We also describe a dynamically reconfigurable generic block that implements the supported regular expression syntax. This enables formation of the regular expression hardware by a simple cascade of generic blocks as well as a possibility for reconfiguring the generic blocks to change the regular expression being matched. Further,we have developed an HDL code generator to obtain the VHDL description of the hardware for any regular expression set. Our optimized regular expression engine achieves a throughput of 2.45 Gbps. Our dynamically reconfigurable regular expression engine achieves a throughput of 0.8 Gbps using 12 FPGA slices per generic block on Xilinx Virtex2Pro FPGA.
Resumo:
The 4ÃÂ4 discrete cosine transform is one of the most important building blocks for the emerging video coding standard, viz. H.264. The conventional implementation does some approximation to the transform matrix elements to facilitate integer arithmetic, for which hardware is suitably prepared. Though the transform coding does not involve any multiplications, quantization process requires sixteen 16-bit multiplications. The algorithm used here eliminates the process of approximation in transform coding and multiplication in the quantization process, by usage of algebraic integer coding. We propose an area-efficient implementation of the transform and quantization blocks based on the algebraic integer coding. The designs were synthesized with 90 nm TSMC CMOS technology and were also implemented on a Xilinx FPGA. The gate counts and throughput achievable in this case are 7000 and 125 Msamples/sec.
Resumo:
High performance video standards use prediction techniques to achieve high picture quality at low bit rates. The type of prediction decides the bit rates and the image quality. Intra Prediction achieves high video quality with significant reduction in bit rate. This paper presents novel area optimized architecture for Intra prediction of H.264 decoding at HDTV resolution. The architecture has been validated on a Xilinx Virtex-5 FPGA based platform and achieved a frame rate of 64 fps. The architecture is based on multi-level memory hierarchy to reduce latency and ensure optimum resources utilization. It removes redundancy by reusing same functional blocks across different modes. The proposed architecture uses only 13% of the total LUTs available on the Xilinx FPGA XC5VLX50T.
Resumo:
Video decoders used in emerging applications need to be flexible to handle a large variety of video formats and deliver scalable performance to handle wide variations in workloads. In this paper we propose a unified software and hardware architecture for video decoding to achieve scalable performance with flexibility. The light weight processor tiles and the reconfigurable hardware tiles in our architecture enable software and hardware implementations to co-exist, while a programmable interconnect enables dynamic interconnection of the tiles. Our process network oriented compilation flow achieves realization agnostic application partitioning and enables seamless migration across uniprocessor, multi-processor, semi hardware and full hardware implementations of a video decoder. An application quality of service aware scheduler monitors and controls the operation of the entire system. We prove the concept through a prototype of the architecture on an off-the-shelf FPGA. The FPGA prototype shows a scaling in performance from QCIF to 1080p resolutions in four discrete steps. We also demonstrate that the reconfiguration time is short enough to allow migration from one configuration to the other without any frame loss.
Resumo:
This paper presents a comparative evaluation of the average and switching models of a dc-dc boost converter from the point of view of real-time simulation. Both the models are used to simulate the converter in real-time on a Field Programmable Gate Array (FPGA) platform. The converter is considered to function over a wide range of operating conditions, and could do transition between continuous conduction mode (CCM) and discontinuous conduction mode (DCM). While the average model is known to be computationally efficient from the perspective of off-line simulation, the same is shown here to consume more logical resources than the switching model for real-time simulation of the dc-dc converter. Further, evaluation of the boundary condition between CCM and DCM is found to be the main reason for the increased consumption of resources by the average model.
Resumo:
High-power voltage-source inverters (VSI) are often switched at low frequencies due to switching loss constraints. Numerous low-switching-frequency PWM techniques have been reported, which are quite successful in reducing the total harmonic distortion under open-loop conditions at such low operating frequencies. However, the line current still contains low-frequency components (though of reduced amplitudes), which are fed back to the current loop controller during closed-loop operation. Since the harmonic frequencies are quite low and are not much higher than the bandwidth of the current loop, these are amplified by the current controller, causing oscillations and instability. Hence, only the fundamental current should be fed back. Filtering out these harmonics from the measured current (before feeding back) leads to phase shift and attenuation of the fundamental component, while not eliminating the harmonics totally. This paper proposes a method for on-line extraction of the fundamental current in induction motor drives, modulated with low-switching-frequency PWM. The proposed method is validated through simulations on MATLAB/Simulink. Further, the proposed algorithm is implemented on Cyclone FPGA based controller board. Experimental results are presented for an R-L load.
Resumo:
A Field Programmable Gate Array (FPGA) based hardware accelerator for multi-conductor parasitic capacitance extraction, using Method of Moments (MoM), is presented in this paper. Due to the prohibitive cost of solving a dense algebraic system formed by MoM, linear complexity fast solver algorithms have been developed in the past to expedite the matrix-vector product computation in a Krylov sub-space based iterative solver framework. However, as the number of conductors in a system increases leading to a corresponding increase in the number of right-hand-side (RHS) vectors, the computational cost for multiple matrix-vector products present a time bottleneck, especially for ill-conditioned system matrices. In this work, an FPGA based hardware implementation is proposed to parallelize the iterative matrix solution for multiple RHS vectors in a low-rank compression based fast solver scheme. The method is applied to accelerate electrostatic parasitic capacitance extraction of multiple conductors in a Ball Grid Array (BGA) package. Speed-ups up to 13x over equivalent software implementation on an Intel Core i5 processor for dense matrix-vector products and 12x for QR compressed matrix-vector products is achieved using a Virtex-6 XC6VLX240T FPGA on Xilinx's ML605 board.
Resumo:
A neonatal temperature monitoring system operating in subthreshold regime that utilizes time mode signal processing is presented. Resistance deviations in a thermistor due to temperature variations are converted to delay variations that are subsequently quantized by a Delay measurement unit (DMU). The DMU does away with the need for any analog circuitry and is synthesizable entirely from digital logic. An FPGA implementation of the system demonstrates the viability of employing time mode signal processing, and measured results show that temperature resolution better than 0.1 degrees C can be achieved using this approach.
Resumo:
Duración (en horas): Más de 50 horas. Destinatario: Estudiante y Docente
Resumo:
El objetivo principal del trabajo es el diseño, utilizando técnicas de bajo consumo, del algoritmo de cifrado estándar AES (Advanced Encryption Standard) y su implementación sobre dispositivos reconfigurables, en particular sobre una FPGA.
Resumo:
179 p.
Resumo:
Embedded system design (VHDL description) based on Xilinx's Spartan3E Development Kit to perform real-time PID control and monitoring of DC motors.
Resumo:
Singular Value Decomposition (SVD) is a key linear algebraic operation in many scientific and engineering applications. In particular, many computational intelligence systems rely on machine learning methods involving high dimensionality datasets that have to be fast processed for real-time adaptability. In this paper we describe a practical FPGA (Field Programmable Gate Array) implementation of a SVD processor for accelerating the solution of large LSE problems. The design approach has been comprehensive, from the algorithmic refinement to the numerical analysis to the customization for an efficient hardware realization. The processing scheme rests on an adaptive vector rotation evaluator for error regularization that enhances convergence speed with no penalty on the solution accuracy. The proposed architecture, which follows a data transfer scheme, is scalable and based on the interconnection of simple rotations units, which allows for a trade-off between occupied area and processing acceleration in the final implementation. This permits the SVD processor to be implemented both on low-cost and highend FPGAs, according to the final application requirements.
Resumo:
Observational and theoretical work towards the separation of foreground emission from the cosmic microwave background is described. The bulk of this work is in the design, construction, and commissioning of the C-Band All-Sky Survey (C-BASS), an experiment to produce a template of the Milky Way Galaxy's polarized synchrotron emission. Theoretical work is the derivation of an analytical approximation to the emission spectrum of spinning dust grains.
The performance of the C-BASS experiment is demonstrated through a preliminary, deep survey of the North Celestial Pole region. A comparison to multiwavelength data is performed, and the thermal and systematic noise properties of the experiment are explored. The systematic noise has been minimized through careful data processing algorithms, implemented both in the experiment's Field Programmable Gate Array (FPGA) based digital backend and in the data analysis pipeline. Detailed descriptions of these algorithms are presented.
The analytical function of spinning dust emission is derived through the application of careful approximations, with each step tested against numerical calculations. This work is intended for use in the parameterized separation of cosmological foreground components and as a framework for interpreting and comparing the variety of anomalous microwave emission observations.