893 resultados para Forces de compression
Resumo:
The compaction behavior of powdered solids used in tablets can be dominated by the physical-chemical properties of the excipients because, frequently, they are present in much larger amounts than the drug in tablet formulation. The aim of this study was to evaluate the influence of the size of lactose granules on the physical characteristics of tablets produced in punches of various diameters, since this relation has not been explored in the literature. Granules were produced in several sizes by wet granulation and compressed in punches of different diameters by applying different forces. Size distribution, apparent density and flow of granules were evaluated, as well as the physical characteristics of the tablets (weight, friability, hardness and disintegration time). The results indicate that in situations where excipient characteristics predominate due to low drug content, as in the 7 mm punch, the selection of granule size is important for the mechanical strength of tablet. On the other hand, with the 9, 11 and 13mm punches, it was possible to produce strong tablet from all sizes of granules.
Resumo:
The compaction behavior of powdered solids can be strongly influenced by the physicochemical properties of excipients because they are frequently present in the tablet in larger amounts than the drug itself. The aim of this study was to assess the influence of the granule size of the cellulose on the physical characteristics of tablets produced in punches of different diameters, since this relation has never been explored in the literature. Granules of several sizes were produced by wet granulation and compressed in punches of various diameters by applying different forces. Size distribution, apparent density and flow of granules were assessed, as well as physical characteristics of the tablets (weight, hardness, friability and disintegration time). Reducing the granule size resulted in tablets of adequate crushing strength and fast disintegration; moreover, it allowed tablets to be produced without the need to use forces near the upper limit of the press, thus avoiding premature wear on the tabletting machine. Thus, once a suitable size for a given tablet formulation has been chosen, the granule size selected has been shown to determine the crushing strength of the tablet.
Resumo:
During gray cast iron cutting, the great rate of mechanical energy from cutting forces is converted into heat. Considerable heat is generated, principally in three areas: the shear zone, rake face and at the clearance side of the cutting edge. Excessive heat will cause undesirable high temperature in the tool which leads to softening of the tool and its accelerated wear and breakage. Nowadays the advanced ceramics are widely used in cutting tools. In this paper a composition special of Si3N4 was sintering, characterized, cut and ground to make SNGN120408 and applyed in machining gray cast iron with hardness equal 205 HB in dry cutting conditions by using digital controlled computer lathe. The tool performance was analysed in function of cutting forces, flank wear, temperature and roughness. Therefore metal removing process is carried out for three different cutting speeds (300 m/min, 600 m/min, and 800 m/min), while a cutting depth of 1 mm and a feed rate of 0.33 mm/rev are kept constant. As a result of the experiments, the lowest main cutting force, which depends on cutting speed, is obtained as 264 N at 600 m/min while the highest main cutting force is recorded as 294 N at 300 m/min.
Resumo:
Studies on the distribution of plantar pressure between the sole of the foot and the ground were developed before the 19th century. Currently, the most often employed plantar pressure measurement systems are Pedar® and FScan®, which have restrictions such as operational difficulty and high cost. In the present study, a device was constructed from two pressure plates capable of measuring plantar forces in discreet areas of the feet at a low cost, using strain-gages attached to sixteen strategic points of the mechanical elements. Sixteen prismatic beams were soldered to each frame, for which the free extremity of each beam represented a specific point of the foot. Two strain gauges were attached to each beam - one near the upper fixed extremity and the other near the lower fixed extremity. Using a Wheatstone bridge electric circuit, the gauges were used to measure the force acting on the extremity of the beam. Precision and accuracy of the prototype was about 10%. In some measurements, accuracy was 2%. The low precision and accuracy were mainly due to the restrictions of the available equipment, which only permitted four measurements at a time. Thus, it was necessary for participants to stand on the plates four separate times, which signified possible changes in the position of the feet on the pressure plates. Despite some limitations, the aim was achieved. The prototype has been used in some studies and represents a contribution to biomechanics, demonstrating the viability of using strain gauges.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objectives: The aim of this study was to evaluate the effect of different seating forces during cementation in cement-ceramic microtensile bond strength (μTBS). Materials and methods: Forty-five blocks (5 × 5 × 4 mm3) of a glass-infiltrated alumina-based ceramic (In-Ceram Alumina) were fabricated according to the manufacturer's instructions and duplicated in resin composite. Ceramic surfaces were polished, cleaned for 10 min in an ultrasonic bath, silica coated using a laboratory type of air abrasion device, and silanized. Each treated ceramic block was then randomly assigned to five groups (n = 9) and cemented to a composite block under five seating forces (10 g, 50 g, 100 g, 500 g, and 750 g) using a dual-cured resin cement (Panavia F). The ceramic-cement-composite assemblies were cut under coolant water to obtain bar specimens (1 mm × 0. 8 mm2). The μTBS tests were performed in a universal testing machine (1 mm/min). The mean bond strengths values were statistically analyzed using one-way ANOVA (α ≤ 0. 05). Results: Different seating forces resulted in no significant difference in the μTBS results ranging between 13. 1 ± 4. 7 and 18. 8 ± 2. 1 MPa (p = 0. 13) and no significant differences among cement thickness. Conclusions: Excessive seating forces during cementation seem not to affect the μTBS results. Clinical relevance: Excessive forces during the seating of single all-ceramic restorations cementation seem to display the same tensile bond strength to the resin cement. © 2012 Springer-Verlag.
Resumo:
In this study, different methods of cutting fluid application are used in turning of a difficult-to-machine steel (SAE EV-8). Initially, a semisynthetic cutting fluid was applied using a conventional method (i.e. overhead flood cooling), minimum quantity of cutting fluid, and pulverization. A lubricant of vegetable oil (minimum quantity of lubricant) was also applied using the minimum quantity method. Thereafter, a cutting fluid jet under high pressure (3.0 MPa) was singly applied in the following regions: chip-tool interface, top surface of the chip (between workpiece and chip) and tool-workpiece contact. Moreover, two other methods were used: an interflow between conventional application and chip-tool interface jet (combined method) and, finally, three jets simultaneously applied. In order to carry out these tests, it was necessary to set up a high-pressure system using a piston pump for generating a cutting fluid jet, a venturi for fluid application (minimum quantity of cutting fluid and minimum quantity of lubricant) and a nozzle for cutting fluid pulverization. The output variables analyzed included tool life, surface roughness, cutting tool temperature, cutting force, chip form, chip compression rate and machined specimen microstructure. Among the results, it can be observed that the tool life increases and the cutting force decreases with the application of cutting fluid jet, mainly when it is directed to the chip-tool interface. Excluding the methods involving jet fluid, the conventional method seems to be more efficient than other methods of low pressure, such as minimum quantity of volume and pulverization, when considering just the cutting tool wear. © 2013 IMechE.
Resumo:
Different methods of cutting fluid application are used on turning of a difficult-tomachine steel (SAE EV-8). A semi-synthetic cutting fluid was applied using a conventional method, minimum quantity of cutting fluid (MQCF), and pulverization. By the minimum quantity method was also applied a lubricant of vegetable oil (MQL). Thereafter, a cutting fluid jet under high pressure (3.0 MPa) was singly applied in the following regions: chip-tool interface; top surface of the chip; and tool-workpiece contact. Two other methods were used: an interflow between conventional application and chip-tool interface jet and, finally, three jets simultaneously applied. In order to carry out these tests, it was necessary to set up a high pressure system using a piston pump for generating a cutting fluid jet, a Venturi for fluid application (MQCF and MQL), and a nozzle for cutting fluid pulverization. The output variables analyzed included tool life, surface roughness, cutting tool temperature, cutting force, chip form, chip compression rate and machined specimen microstructure. It can be observed that the tool life increases and the cutting force decreases with the application of cutting fluid jet, mainly when it is directed to the chip-tool interface. Excluding the methods involving jet fluid, the conventional method seems to be more efficient than other methods of low pressure. © (2013) Trans Tech Publications, Switzerland.
Resumo:
A gas of non-interacting particles diffuses in a lattice of pulsating scatterers. In the finite-horizon case with bounded distance between collisions and strongly chaotic dynamics, the velocity growth (Fermi acceleration) is well described by a master equation, leading to an asymptotic universal non-Maxwellian velocity distribution scaling as v∼t. The infinite-horizon case has intermittent dynamics which enhances the acceleration, leading to v∼t ln t and a non-universal distribution. © Copyright EPLA, 2013.
Resumo:
Pós-graduação em Ciência Animal - FMVA
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Includes bibliography
Resumo:
Pós-graduação em Odontologia - FOA
Resumo:
Pós-graduação em Odontologia - FOA