992 resultados para Focal mechanism
Resumo:
The plastic flow of quenched aluminium at 86°K was investigated by ‘differential-stress’ creep tests in order to evaluate the rate-controlling mechanism in as-quenched and fully aged states. The experimental values of activation volume (4·3 × 10−21 cm3 for as-quenched and 5·5×l0−21cm3 for fully aged) and the total energy for thermal activation process (0·4 ev for both) are in accordance with the jog hardening and loop hardening mechanisms in quenched and fully aged states respectively.
Resumo:
Long-distance dispersal (LDD) events, although rare for most plant species, can strongly influence population and community dynamics. Animals function as a key biotic vector of seeds and thus, a mechanistic and quantitative understanding of how individual animal behaviors scale to dispersal patterns at different spatial scales is a question of critical importance from both basic and applied perspectives. Using a diffusion-theory based analytical approach for a wide range of animal movement and seed transportation patterns, we show that the scale (a measure of local dispersal) of the seed dispersal kernel increases with the organisms' rate of movement and mean seed retention time. We reveal that variations in seed retention time is a key determinant of various measures of LDD such as kurtosis (or shape) of the kernel, thinkness of tails and the absolute number of seeds falling beyond a threshold distance. Using empirical data sets of frugivores, we illustrate the importance of variability in retention times for predicting the key disperser species that influence LDD. Our study makes testable predictions linking animal movement behaviors and gut retention times to dispersal patterns and, more generally, highlights the potential importance of animal behavioral variability for the LDD of seeds.
Resumo:
Reduction of carbon emissions is of paramount importance in the context of global warming and climate change. Countries and global companies are now engaged in understanding systematic ways of solving carbon economics problems, aimed ultimately at achieving well defined emission targets. This paper proposes mechanism design as an approach to solving carbon economics problems. The paper first introduces carbon economics issues in the world today and next focuses on carbon economics problems facing global industries. The paper identifies four problems faced by global industries: carbon credit allocation (CCA), carbon credit buying (CCB), carbon credit selling (CCS), and carbon credit exchange (CCE). It is argued that these problems are best addressed as mechanism design problems. The discipline of mechanism design is founded on game theory and is concerned with settings where a social planner faces the problem of aggregating the announced preferences of multiple agents into a collective decision, when the actual preferences are not known publicly. The paper provides an overview of mechanism design and presents the challenges involved in designing mechanisms with desirable properties. To illustrate the application of mechanism design in carbon economics,the paper describes in detail one specific problem, the carbon credit allocation problem.
ZnO/Ag nanohybrid: synthesis, characterization, synergistic antibacterial activity and its mechanism
Resumo:
A highly homogeneous ZnO/Ag nanohybrid has been synthesized by a novel route, employing chitosan as mediator by purely electrostatic interaction. By employing various techniques such as powder XRD, UV-visible, IR spectroscopy and electron (SEM, TEM) microscopy, the formation of the nanohybrid has been established. The synergistic antibacterial effect of ZnO/Ag nanohybrid on Gram-positive and Gram-negative bacteria is found to be more effective, compared to the individual components (ZnO and Ag). Cytotoxicity experiments are carried out and the results are correlated to the solubility of the nanohybrid. A possible mechanism has been proposed for the antibacterial activity of ZnO/Ag nanohybrid, based on TEM studies on bacteria, carried out by employing the microtome technique and by EPR measurements on the hybrid.
Resumo:
The effects of Mo, Ti, and Zr on the diffusion and growth of the Nb(X)Si-2 and Nb(X)(5)Si-3 phases in an Nb(X)-Si system are analyzed. The integrated diffusion coefficients are determined from diffusion couple experiments and compared with the data previously calculated in a binary Nb-Si system. The growth rates of both phases are affected by the addition of Mo and Zr, whereas the addition of Ti has no effect. The atomic mechanism of diffusion is also discussed based on the crystal structure and the possible changes in the defect concentrations due to alloying. Finally, the growth mechanism of the phases is discussed on the basis of a physico-chemical approach. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The problem and related earlier work All the above problems involve the passage of a long chain molecule, through a region in space, where the free energy per segment is higher, thus effectively presenting a barrier for the motion of the molecule. This is what we refer to as the Kramers proble...
Resumo:
Design of the required tool is a key and important parameter in the technique of friction stir welding (FSW). This is so because tool design does exert a close control over the quality of the weld. In an attempt to optimize tool design and its selection, it is essential and desirable to understand the mechanisms governing the formation of the weld. In this research study, few experiments were conducted to systematically analyze the intrinsic mechanisms governing the formation of the weld and to effectively utilize the analysis to establish a logical basis for design of the tool. For this purpose, the experiments were conducted using different geometries of the shoulder and pin of the rotating tool in such a way that only tool geometry had an intrinsic influence on formation of the weld. The results revealed that for a particular diameter of the pin there is an optimum diameter of the shoulder. Below this optimum shoulder diameter, the weld does not form while above the optimum diameter the overall symmetry of the weld is lost. Based on experimental results, a mechanism for the formation of friction stir weld is proposed. A synergism of the experimental results with the proposed mechanism is helpful in establishing the set of welding parameters for a given material.
Resumo:
The t(14;18) translocation in follicular lymphoma is one of the most common chromosomal translocations. Breaks in chromosome 18 are localized at the 3'-UTR of BCL2 gene or downstream and are mainly clustered in either the major breakpoint region or the minor breakpoint cluster region (mcr). The recombination activating gene (RAG) complex induces breaks at IgH locus of chromosome 14, whereas the mechanism of fragility at BCL2 mcr remains unclear. Here, for the first time, we show that RAGs can nick mcr; however, the mechanism is unique. Three independent nicks of equal efficiency are generated, when both Mg2+ and Mn2+ are present, unlike a single nick during V(D)J recombination. Further, we demonstrate that RAG binding and nicking at the mcr are independent of nonamer, whereas a CCACCTCT motif plays a critical role in its fragility, as shown by sequential mutagenesis. More importantly, we recapitulate the BCL2 mcr translocation and find that mcr can undergo synapsis with a standard recombination signal sequence within the cells, in a RAG-dependent manner. Further, mutation to the CCACCTCT motif abolishes recombination within the cells, indicating its vital role. Hence, our data suggest a novel, physiologically relevant, nonamer-independent mechanism of RAG nicking at mcr, which may be important for generation of chromosomal translocations in humans.
Resumo:
Sesbania mosaic virus (SeMV) is a positive stranded RNA virus belonging to the genus Sobemovirus. Construction of an infectious clone is an essential step for deciphering the virus gene functions in vivo. Using Agrobacterium based transient expression system we show that SeMV icDNA is infectious on Sesbania grandiflora and Cyamopsis tetragonoloba plants. The efficiency of icDNA infection was found to be significantly high on Cyamopsis plants when compared to that on Sesbania grandiflora. The coat protein could be detected within 6 days post infiltration in the infiltrated leaves. Different species of viral RNA (double stranded and single stranded genomic and subgenomic RNA) could be detected upon northern analysis, suggesting that complete replication had taken place. Based on the analysis of the sequences at the genomic termini of progeny RNA from SeMV icDNA infiltrated leaves and those of its 3' and 5' terminal deletion mutants, we propose a possible mechanism for 3' and 5' end repair in vivo. Mutation of the cleavage sites in the polyproteins encoded by ORF 2 resulted in complete loss of infection by the icDNA, suggesting the importance of correct polyprotein processing at all the four cleavage sites for viral replication. Complementation analysis suggested that ORF 2 gene products can act in trans. However, the trans acting ability of ORF 2 gene products was abolished upon deletion of the N-terminal hydrophobic domain of polyprotein 2a and 2ab, suggesting that these products necessarily function at the replication site, where they are anchored to membranes.
Resumo:
Pyridoxal 5'-phosphate (PLP)-dependent enzymes utilize the unique chemistry of a pyridine ring to carry out diverse reactions involving amino acids. Diaminopropionate (DAP) ammonia-lyase (DAPAL) is a prokaryotic PLP-dependent enzyme that catalyzes the degradation of D-and L-forms of DAP to pyruvate and ammonia. Here, we report the first crystal structure of DAPAL from Escherichia coli (EcDAPAL) in tetragonal and monoclinic forms at 2.0 and 2.2 angstrom resolutions, respectively. Structures of EcDAPAL soaked with substrates were also determined. EcDAPAL has a typical fold type II PLP-dependent enzyme topology consisting of a large and a small domain with the active site at the interface of the two domains. The enzyme is a homodimer with a unique biological interface not observed earlier. Structure of the enzyme in the tetragonal form had PLP bound at the active site, whereas the monoclinic structure was in the apo-form. Analysis of the apo and holo structures revealed that the region around the active site undergoes transition from a disordered to ordered state and assumes a conformation suitable for catalysis only upon PLP binding. A novel disulfide was found to occur near a channel that is likely to regulate entry of ligands to the active site. EcDAPAL soaked with DL-DAP revealed density at the active site appropriate for the reaction intermediate aminoacrylate, which is consistent with the observation that EcDAPAL has low activity under crystallization conditions. Based on the analysis of the structure and results of site-directed mutagenesis, a two-base mechanism of catalysis involving Asp(120) and Lys(77) is suggested.
Resumo:
The reaction of a tridentate Schiff base ligand HL (2-(3-dimethylaminopropylimino)-methyl]-phenol) with Ni(II) acetate or perchlorate salts in the presence of azide as coligand has led to two new Ni(II) complexes of formulas Ni3L2(OAc)(2)(mu(1,1)-N-3)(2)(H2O)(2)]center dot 2H(2)O (1) and Ni2L2(mu(1,1)-N-3) (mu(1,3)-N-3)](n)(2). Single crystal X-ray structures show that complex 1 is a linear trinuclear Ni(II) compound containing a mu(2)-phenwddo, an end-on (EO) azido and a syn-syn acetato bridge between the terminal and the central Ni(II) ions. Complex 2 can be viewed as a one-dimensional (1D) chain in which the triply bridged (di-mu(2)-phenoxido and EO azido) dimeric Ni-2 units are linked to each other in a zigzag pattern by a single end-to-end (EE) azido bridge. Variable-temperature magnetic susceptibility studies indicate the presence of moderate ferromagnetic exchange coupling in complex 1 with J value of 16.51(6) cm(-1). The magnetic behavior of 2 can be fitted in an alternating ferro- and antiferromagnetic model J(FM) = +34.2(2.8) cm(-1) and J(AF) = -21.6(1.1) cm(-1)] corresponding to the triple bridged dinuclear core and EE azido bridge respectively. Density functional theory (DFT) calculations were performed to corroborate the magnetic results of 1 and 2. The contributions of the different bridges toward magnetic interactions in both compounds have also been calculated.
Resumo:
In view of the importance of the suicides in the high temperature applications, the diffusion behaviour is compared in different systems for two types of silicides, XSi2 and X5Si3 (X=Nb, Mo, V). Atomic mechanism of diffusion and defects present in the structure are discussed. In both the phases, Si has faster diffusion rate than the metal species. This is expected from the nearest neighbour (NN) bonds present in the XSi2 phase but rather unusual in the X5Si3 phase. Relative mobilities of the species calculated indicate the presence of high concentration of Si antisites. Moreover, the concentration of the defects is different in different systems to find different diffusion rates.
Resumo:
Nb is one of the common refractory elements added in Ni, Co and Fe based superalloys. This lead to the formation of brittle topological close packed (tcp) mu phase, which is deleterious to the structure. It mainly grows by interdiffusion and in the present article, the interdiffusion process in different Nb-X (X=Ni, Co, Fe) systems is discussed. The activation energy for interdiffusion is lower in the Co-Nb system (173 kJ/mol) than Fe-Nb system (233 kJ/mol), which is again lower than the value found in the Ni-Nb system (319.7 kJ/mol). The mole fraction of Nb in this phase is less than Fe or Co at stoichiometric compositions in the Nb-Fe (that is Fe7Nb6) and Nb-Co (that is Co7Nb6) systems. On the other hand, the mole fraction of Nb is higher than Ni in the same phase (Ni6Nb2) in Ni-Nb system. However, in all the phases, Nb has lower diffusion rate. Possible diffusion mechanism in this phase is discussed with respect to the crystal structure.