695 resultados para Flyvbjerg, Bent


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We determined the stable oxygen and carbon isotopic composition of live (Rose Bengal stained) tests belonging to different size classes of two benthic foraminiferal species from the Pakistan continental margin. Samples were taken at 2 sites, with water depth of about 135 and 275 m, corresponding to the upper boundary and upper part of the core region of the oxygen minimum zone (OMZ). For Uvigerina ex gr. U. semiornata and Bolivina aff. B. dilatata, delta13C and delta18O values increased significantly with increasing test size. In the case of U. ex gr. U. semiornata, delta13C increased linearly by about 0.105 per mil for each 100-µm increment in test size, whereas delta18O increased by 0.02 to 0.06 per mil per 100 µm increment. For B. aff. B. dilatata the relationship between test size and stable isotopic composition is better described by logarithmic equations. A strong positive linear correlation is observed between delta18O and delta13C values of both taxa, with a constant ratio of delta18O and delta13C values close to 2:1. This suggests that the strong ontogenetic effect is mainly caused by kinetic isotope fractionation during CO2 uptake. Our data underline the necessity to base longer delta18O and delta13C isotope records derived from benthic foraminifera on size windows of 100 µm or less. This is already common practice in down-core isotopic studies of planktonic foraminifera.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Holes 1209A and 1211A on Southern High, Shatsky Rise contain expanded, nearly continuous records of carbonate-rich sediment deposited in deep water of the equatorial Pacific Ocean during the Paleocene and Eocene. In this study, we document intervals of carbonate dissolution in these records by examining temporal changes in four parameters: carbonate content, coarse size fraction (>38 µm), benthic foraminiferal abundance, and planktonic foraminiferal fragmentation ratio. Carbonate content is not a sensitive indicator of carbonate dissolution in the studied sections, although rare intervals of low carbonate may reflect times of relatively high dissolution. The proportion of coarse size fraction does not accurately record carbonate dissolution either because the relative abundance of nannofossils largely determines the grain-size distribution. Benthic abundance and fragmentation covary (r**2 = 0.77) and are probably the best indicators for carbonate dissolution. For both holes, records of these parameters indicate two episodes of prominent dissolution. The first of these occurs in the upper Paleocene (~59-58 Ma) and the second in the middle to upper Eocene (~45-33.7 Ma). Other intervals of enhanced carbonate dissolution are located in the upper Paleocene (~56 Ma) and in the upper lower Eocene (~51 Ma). Enhanced preservation of planktonic foraminiferal assemblages marks the start of both the Paleocene and Eocene epochs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Paleobathymetric assessments of fossil foraminiferal faunas play a significant role in the analysis of the paleogeographic, sedimentary, and tectonic histories of New Zealand's Neogene marine sedimentary basins. At depths >100 m, these assessments often have large uncertainties. This study, aimed at improving the precision of paleodepth assessments, documents the present-day distribution of deep-sea foraminifera (>63 µm) in 66 samples of seafloor sediment at 90-700 m water depth (outer shelf to mid-abyssal), east of New Zealand. One hundred and thirty-nine of the 465 recorded species of benthic foraminifera are new records for the New Zealand region. Characters of the foraminiferal faunas which appear to provide the most useful information for estimating paleobathymetry are, in decreasing order of reliability: relative abundance of common benthic species; benthic species associations; upper depth limits of key benthic species; and relative abundance of planktic foraminifera. R mode cluster analysis on the quantitative census data of the 58 most abundant species of benthic foraminifera produced six species associations within three higher level clusters: (1) calcareous species most abundant at mid-bathyal to outer shelf depths (<1000 m); (2) calcareous species most abundant at mid-bathyal and greater depths (>600 m); (3) agglutinated species mostly occurring at deep abyssal depths (>3000 m). A detrended correspondence analysis ordination plot exhibits a strong relationship between these species associations and bathymetry. This is manifest in the bathymetric ranges of the relative abundance peaks of many of the common benthic species (e.g., Abditodentrix pseudothalmanni 500-2800 m, Bolivina robusta 200-650 m, Bulimina marginata f. marginata 20-600 m, B. marginata f. aculeata 400-3000 m, Cassidulina norvangi 1000-4500 m, Epistominella exigua 1000-4700 m, and Trifarina angulosa 10-650 m), which should prove useful in paleobathymetric estimates. The upper depth limits of 28 benthic foraminiferal species (e.g., Fursenkoina complanata 200 m, Bulimina truncana 450 m, Melonis affinis 550 m, Eggerella bradyi 750 m, and Cassidulina norvangi 1000 m) have potential to improve the precision of paleobathymetric estimates based initially on the total faunal composition. The planktic percentage of foraminiferal tests increases from outer shelf to upper abyssal depths followed by a rapid decline within the foraminiferal lysocline (below c. 3600 m). A planktic percentage <50% is suggestive of shelf depths, and >50% is suggestive of bathyal or abyssal depths above the CCD. In the abyssal zone there is dramatic taphonomic loss of most agglutinated tests (except some textulariids) at burial depths of 0.1-0.2 m, which negates the potential usefulness of these taxa in paleobathymetric assessments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Study of four species of the biserial planktonic foraminifer Streptochitus from Deep Sea Drilling Project cores of the Eauripik Rise, western equatorial Pacific, and Ninety-east Ridge, Indian Ocean, shows that both the stratigraphic distribution of species and their frequency patterns (though not actual frequencies or abundances) are correlative in the two areas, supporting their use as stratigraphic and paleoecologic index fossils. Their distributional trends are linked to eustatic sea level changes and to changes in the mixing of surface waters; low frequencies and species turnovers occur during regressive phases when strong circulation of oxygenated waters could lead to the subsequent decline of their oxygen-minimum habitat. The species S. subglobigerum. S. latum. S. globigerum, and S. globulosum succeed one another at intervals averaging 2,5 my from late middle Miocene Zone N15 through Quaternary Zone N23. The new species, Streptochilus suhglobigerum, is described for what was formerly thought to be a stratiraphically lower, disjunct part of the range of S. globigerum. These four species most likely belong to a single phylogenetic lineage as evidenced by some transitional morphologies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study is based on Cenomanian sediments of Ocean Drilling Program (ODP) Sites 1258 and 1260 from Demerara Rise (Leg 207, western tropical Atlantic, off Suriname, ~1000 and ~500 m paleo-water depth, respectively). Studied sediments consist of laminated black shales with TOC values between 3 and 18% and include the Mid Cenomanian Event (MCE), a positive carbon isotope excursion predating the well-known Oceanic Anoxic Event 2 (OAE 2). Benthic foraminiferal assemblages of the continuously eutrophic environment at Demerara Rise are characterized by low diversities (<= 9 species per sample) and large fluctuations in abundances, indicating oxygen depletion and varying organic matter fluxes. Dominant species at both sites are Bolivina anambra, Gabonita levis, Gavelinella dakotensis, Neobulimina albertensis, Praebulimina prolixa, and Tappanina cf. laciniosa. Benthic foraminiferal assemblages across the MCE show a threefold pattern: (1) stable ecological conditions below the MCE interval indicated by relatively high oxygenation and fluctuating organic matter flux, (2) decreasing oxygenation and/or higher organic matter flux during the MCE with decreasing benthic foraminiferal numbers and diversities (Site 1258) and a dominance of opportunistic species (Site 1260), and (3) anoxic to slightly dysoxic bottom-water conditions above the MCE as indicated by very low diversities and abundances or even the absence of benthic foraminifera. Slightly dysoxic conditions prevailed until OAE 2 at Demerara Rise. A comparison with other Atlantic Ocean and Tethyan sections indicates that the MCE reflects a paleoceanographic turning point towards lower bottom-water oxygenation, at least in the proto-North Atlantic Ocean and in the Tethyan and Boreal Realms. This general trend towards lower oxygenation of bottom waters across the MCE is accompanied by ongoing climate warming in combination with rising sea-level and the development of vast shallow epicontinental seas during the Middle and Late Cenomanian. These changes are proposed to have favoured the formation of warm and saline waters that may have contributed to intermediate- and deep-water masses at least in the restricted proto-North Atlantic and Tethyan Ocean basins, poor oxygenation of the Late Cenomanian sediments, and the changes in benthic foraminiferal assemblages across the MCE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxygen isotope data for upper Turonian planktonic foraminifera at Deep Sea Drilling Project Site 511 (Falkland Plateau, 60°S paleolatitude) exhibit an ~2 per mil excursion to values as low as -4.66 per mil (Vienna Peedee belemnite standard; PDB) coincident with the warmest tropical temperature estimates yet obtained for the open ocean. The lowest planktonic foraminifer d18O values suggest that the upper ocean was as warm as 30-32°C. This is an extraordinary temperature for 60°S latitude but is consistent with temperatures estimated from apparently coeval mollusc d18O from nearby James Ross Island (65°S paleolatitude). Glassy textural preservation, a well-defined depth distribution in Site 511 planktonics, low sediment burial temperature (~32°C), and lack of evidence of highly depleted pore waters argue against diagenesis (even solid state diffusion) as the cause of the very depleted planktonic values. The lack of change in benthic foraminifer d18O suggests brackish water capping as the mechanism for the low planktonic d18O values. However, mixing ratio calculations show that the amount of freshwater required to produce a 2 per mil shift in ambient water would drive a 7 psu decrease in salinity. The abundance and diversity of planktonic foraminifera and nannofossils, high planktonic:benthic ratios, and the appearance of keeled foraminifera argue against lower-than-normal marine salinities. Isotope calculations and climate models indicate that we cannot call upon more depleted freshwater d18O to explain this record. Without more late Turonian data, especially from outside the South Atlantic basin, we can currently only speculate on possible causes of this paradoxical record from the core of the Cretaceous greenhouse.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two foraminiferal assemblages are observed in surface sediments of the Elbe estuarv. an Elphidium excavatum assemblaae and an Ahmonia/Protelphidium assemblage. They are the result of test-size sorting in accordance to the grain size of the sediments. These assemblages of mainly empty tests differ basically from the living population, which is dominated exclusively by E. excavatum. The average test size is decreasing when advancing from the Open sea into the estuary and the living fauna disappears near the entrance of the Kiel Canal. In the dead assemblage the diversity is distinctively higher and the average test size varies with the grain size of the sediment. The assemblages found in plankton tows are nearly identical with those in corresponding bottom samples. This indicates the distribution pattern to be caused by transport in currents (mainly in suspension). This type of foraminiferal assemblages characterize macro- and mesotidal estuaries and might indicate a high tidal range when observed in sediments of fossil estuaries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Indicators of surface-water productivity and bottom-water oxygenation have been studied for the age interval from the latest Pleistocene to the Holocene at three holes (679D, 680B, and 68IB) located in the center and at the edges of an upwelling cell at approximately 11°S on the Peruvian continental margin. Upwelling activity was maximal at this latitude during d18O Stages 1 (lower part), 3, the upper part of 5, the lower part of 6, and 7, as documented by high diatom abundance. During these time intervals, the bottom water was poorly oxygenated, as documented by low diversity benthic foraminiferal assemblages that are dominated by B. seminuda s.l. Both surface- and bottom-water-circulation patterns appear to have changed rapidly over short time intervals. Due to changes in surface circulation, the intensity of upwelling decreased, thereby decreasing the concentration of nutrients, and reducing the supply of organic matter to the bottom. Radiolarians became more abundant in the surface waters, and the bottom-water environment was less depleted in oxygen, allowing for the establishment of more diverse benthic foraminiferal assemblages. Surface-water productivity was probably minimal during the early part of d18O Stages 5 and 9, as indicated by the increased abundance of planktonic foraminifers and pteropods and their subsequent preservation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

On the Cape Verde Plateau, Neogene deposits are composed of major pelagic and hemipelagic sediments. These sediments show climatic sequences composed of two lithologic terms that differ in their siliciclastic and carbonate contents. Several turbiditic and contouritic sequences are interbedded in these deposits. Turbidite sequences are fine grained and thin bedded with a very low frequency (about 12 sequences during the Neogene). They are composed of quartz-rich siliciclastic or volcaniclastic sediments. Quartz-rich turbidites originated from the Senegalese margin. Their slightly higher frequency during the early Pliocene indicates that the stronger turbidity currents, and probably the most abundant continental inputs, occur at that period. Volcaniclastic turbidites are only present in the early Miocene (about 17 Ma) and the early Pleistocene (1 Ma). They have flown from adjacent Cape Verde Islands and reflect two episodes of high volcanic activity in this area. Contourite sequences, composed of biogenic sandy silts, represent less than 5% of the sediment pile and seem to have been mainly deposited during the late Pleistocene. These different sequences show clay mineral variations throughout Neogene time. Kaolinite is predominant in the Miocene and lower Pliocene deposits; this mineral decreases thereafter, with an increased trend of illite in the uppermost Pliocene and Pleistocene sediments, suggesting a change in sediment sources on the Saharan continent at about 2.6 Ma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the mid-Cretaceous period, the global subsurface oceans were relatively warm, but the origins of the high temperatures are debated. One hypothesis suggests that high sea levels and the continental configuration allowed high-salinity waters in low-latitude epicontinental shelf seas to sink and form deep-water masses (Brass et al., 1982, doi:10.1038/296620a0; Arthur and Natland, 1979; Chamberlin, 1906). In another scenario, surface waters in high-latitude regions, the modern area of deep-water formation, were warmed through greenhouse forcing (Bice and Marotzke, 2001, doi:10.1029/2000JC000561), which then propagated through deep-water circulation. Here, we use oxygen isotopes and Mg/Ca ratios from benthic foraminifera to reconstruct intermediate-water conditions in the tropical proto-Atlantic Ocean from 97 to 92 Myr ago. According to our reconstruction, intermediate-water temperatures ranged between 20 and 25 °C, the warmest ever documented for depths of 500-1,000 m. Our record also reveals intervals of high-salinity conditions, which we suggest reflect an influx of saline water derived from epicontinental seas around the tropical proto-North Atlantic Ocean. Although derived from only one site, our data indicate the existence of warm, saline intermediate waters in this silled basin. This combination of warm saline intermediate waters and restricted palaeogeography probably acted as preconditioning factors for the prolonged period of anoxia and black-shale formation in the equatorial proto-North Atlantic Ocean during the Cretaceous period.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Records of benthic foraminifera from North Atlantic DSDP Site 607 and Hole 610A indicate changes in deep water conditions through the middle to late Pliocene (3.15 to 2.85 Ma). Quantitative analyses of modem associations in the North Atlantic indicate that seven species, Fontbotia wuellerstorfi, Cibicidoides kullenbergi, Uvigerina peregrina, Nuttallides umboniferus, Melonis pompilioides, Globocassidulina subglobosa and Epistominella exigua are useful for paleoenvironmental interpretation. The western North Atlantic basin (Site 607) was occupied by North Atlantic Deep Water (NADW) until c. 2.88 Ma. At that time, N. umboniferus increased, indicating an influx of Southern Ocean Water (SOW). The eastern North Atlantic basin (Hole 610A) was occupied by a relatively warm water mass, possibly Northeastern Atlantic Deep Water (NEADW), through c. 2.94 Ma when SOW more strongly influenced the site. These interpretations are consistent with benthic delta18O and delta13C records from 607 and 610A (Raymo et al., 1992). The results presented in this paper suggest that the North Atlantic was strongly influenced by northern component deep water circulation until 2.90-2.95 Ma. After that there was a transition toward a glacially driven North Atlantic circulation more strongly influenced by SOW associated with the onset of Northern Hemisphere glaciation. The circulation change follows the last significant SST and atmospheric warming prior to c. 2.6 Ma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The climate during the Cenozoic era changed in several steps from ice-free poles and warm conditions to ice-covered poles and cold conditions. Since the 1950s, a body of information on ice volume and temperature changes has been built up predominantly on the basis of measurements of the oxygen isotopic composition of shells of benthic foraminifera collected from marine sediment cores. The statistical methodology of time series analysis has also evolved, allowing more information to be extracted from these records. Here we provide a comprehensive view of Cenozoic climate evolution by means of a coherent and systematic application of time series analytical tools to each record from a compilation spanning the interval from 4 to 61 Myr ago. We quantitatively describe several prominent features of the oxygen isotope record, taking into account the various sources of uncertainty (including measurement, proxy noise, and dating errors). The estimated transition times and amplitudes allow us to assess causal climatological-tectonic influences on the following known features of the Cenozoic oxygen isotopic record: Paleocene-Eocene Thermal Maximum, Eocene-Oligocene Transition, Oligocene-Miocene Boundary, and the Middle Miocene Climate Optimum. We further describe and causally interpret the following features: Paleocene-Eocene warming trend, the two-step, long-term Eocene cooling, and the changes within the most recent interval (Miocene-Pliocene). We review the scope and methods of constructing Cenozoic stacks of benthic oxygen isotope records and present two new latitudinal stacks, which capture besides global ice volume also bottom water temperatures at low (less than 30°) and high latitudes. This review concludes with an identification of future directions for data collection, statistical method development, and climate modeling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Temporal changes in benthic foraminiferal assemblages were quantitatively examined (> 63 µm fraction) in four southwest Pacific deep-sea Neogene sequences in a depth transect between approximately 1300 and 3200 m to assist in evaluating paleoeeanographic history. The most conspicuous changes in benthic foraminiferal assemblages occurred in association with paleoclimatic changes defined at least in part by oxygen isotopic changes. The largest, centered at ~15 Ma (early Middle Miocene), is represented by an increase in the relative frequencies of Epistominella exigua, which underwent a major upward depth migration at that time. This was contemporaneous with the well-known positive oxygen isotopic shift in the early Middle Miocene. In Sites 588 and 590, most of the increase in relative abundances of E. exigua occurred during the middle to later part of the ~80 shift, following major growth of the east Antarctic ice sheet. Later assemblage changes occurred at 8.5 and 6.5 Ma. These associations indicate that the benthic foraminiferal assemblages in this depth transect largely adjusted to changes in deep waters related to Antarctic cryospheric evolution. In general, the Neogene benthic foraminiferal assemblages in this region underwent little change during the last 23 million years. This faunal conservatism suggests that deep-sea environments underwent relatively little change in the southwest Pacific during much of the Neogene. Although paleoceanographic changes did occur, partly in response to highlatitude cryospheric evolution, these were not of sufficient magnitude to create major deep-sea faunal changes in this part of the ocean. The benthic foraminiferal assemblages are dominated by individuals smaller than 150 µm. Most taxonomic turnover occurred in the larger (> 150 µm) size fractions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trigger weight (TWC) and piston (PC) cores obtained from surveys of the three sites drilled during Ocean Drilling Program (ODP) Leg 105 were studied in detail for benthic foraminiferal assemblages, total carbonate (all sites), planktonic foraminiferal abundances (Sites 645 and 647), and stable isotopes (Sites 646 and 647). These high-resolution data provide the link between modern environmental conditions represented by the sediment in the TWC and the uppermost cores of the ODP holes. This link provides essential control data for interpretating late Pleistocene paleoceanographic records from these core holes. At Site 645 in Baffin Bay, local correlation is difficult because the area is dominated by ice-rafted deposits and by debris flows and/or turbidite sedimentation. At the two Labrador Sea sites (646 and 647), the survey cores and uppermost ODP cores can be correlated. High-resolution data from the site survey cores also provide biostratigraphic data that refine the interpretations compiled from core-catcher samples at each ODP site.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Benthic foraminiferal assemblages from northeast Atlantic DSDP Sites 609, 610, and 611 have been interpreted with reference to modern assemblages known to be linked with the overlying bottom-water masses. It is shown that the water masses in the late Miocene to Pleistocene were similar to those of today. The distribution of the water masses changed with time, however. Antarctic Bottom Water ("AABW"), which at present is restricted to the area south of the Azores, reached as far north as the Gibbs Fracture Zone in the early Pliocene. Increased production of North Atlantic Deep Water in the late Pliocene displaced the AABW to the south