994 resultados para Fire Modelling
Resumo:
Nonlinear Noisy Leaky Integrate and Fire (NNLIF) models for neurons networks can be written as Fokker-Planck-Kolmogorov equations on the probability density of neurons, the main parameters in the model being the connectivity of the network and the noise. We analyse several aspects of the NNLIF model: the number of steady states, a priori estimates, blow-up issues and convergence toward equilibrium in the linear case. In particular, for excitatory networks, blow-up always occurs for initial data concentrated close to the firing potential. These results show how critical is the balance between noise and excitatory/inhibitory interactions to the connectivity parameter.
Resumo:
This paper reviews three different approaches to modelling the cost-effectiveness of schistosomiasis control. Although these approaches vary in their assessment of costs, the major focus of the paper is on the evaluation of effectiveness. The first model presented is a static economic model which assesses effectiveness in terms of the proportion of cases cured. This model is important in highlighting that the optimal choice of chemotherapy regime depends critically on the level of budget constraint, the unit costs of screening and treatment, the rates of compliance with screening and chemotherapy and the prevalence of infection. The limitations of this approach is that it models the cost-effectiveness of only one cycle of treatment, and effectiveness reflects only the immediate impact of treatment. The second model presented is a prevalence-based dynamic model which links prevalence rates from one year to the next, and assesses effectiveness as the proportion of cases prevented. This model was important as it introduced the concept of measuring the long-term impact of control by using a transmission model which can assess reduction in infection through time, but is limited to assessing the impact only on the prevalence of infection. The third approach presented is a theoretical framework which describes the dynamic relationships between infection and morbidity, and which assesses effectiveness in terms of case-years prevented of infection and morbidity. The use of this model in assessing the cost-effectiveness of age-targeted treatment in controlling Schistosoma mansoni is explored in detail, with respect to varying frequencies of treatment and the interaction between drug price and drug efficacy.
Resumo:
OBJECTIVES: Darunavir is a protease inhibitor that is administered with low-dose ritonavir to enhance its bioavailability. It is prescribed at standard dosage regimens of 600/100 mg twice daily in treatment-experienced patients and 800/100 mg once daily in naive patients. A population pharmacokinetic approach was used to characterize the pharmacokinetics of both drugs and their interaction in a cohort of unselected patients and to compare darunavir exposure expected under alternative dosage regimens. METHODS: The study population included 105 HIV-infected individuals who provided darunavir and ritonavir plasma concentrations. Firstly, a population pharmacokinetic analysis for darunavir and ritonavir was conducted, with inclusion of patients' demographic, clinical and genetic characteristics as potential covariates (NONMEM(®)). Then, the interaction between darunavir and ritonavir was studied while incorporating levels of both drugs into different inhibitory models. Finally, model-based simulations were performed to compare trough concentrations (Cmin) between the recommended dosage regimen and alternative combinations of darunavir and ritonavir. RESULTS: A one-compartment model with first-order absorption adequately characterized darunavir and ritonavir pharmacokinetics. The between-subject variability in both compounds was important [coefficient of variation (CV%) 34% and 47% for darunavir and ritonavir clearance, respectively]. Lopinavir and ritonavir exposure (AUC) affected darunavir clearance, while body weight and darunavir AUC influenced ritonavir elimination. None of the tested genetic variants showed any influence on darunavir or ritonavir pharmacokinetics. The simulations predicted darunavir Cmin much higher than the IC50 thresholds for wild-type and protease inhibitor-resistant HIV-1 strains (55 and 550 ng/mL, respectively) under standard dosing in >98% of experienced and naive patients. Alternative regimens of darunavir/ritonavir 1200/100 or 1200/200 mg once daily also had predicted adequate Cmin (>550 ng/mL) in 84% and 93% of patients, respectively. Reduction of darunavir/ritonavir dosage to 600/50 mg twice daily led to a 23% reduction in average Cmin, still with only 3.8% of patients having concentrations below the IC50 for resistant strains. CONCLUSIONS: The important variability in darunavir and ritonavir pharmacokinetics is poorly explained by clinical covariates and genetic influences. In experienced patients, treatment simplification strategies guided by drug level measurements and adherence monitoring could be proposed.
Resumo:
Practice Note 3 Escape bed lifts
Resumo:
Rapid response to: Ortegón M, Lim S, Chisholm D, Mendis S. Cost effectiveness of strategies to combat cardiovascular disease, diabetes, and tobacco use in sub-Saharan Africa and South East Asia: mathematical modelling study. BMJ. 2012 Mar 2;344:e607. doi: 10.1136/bmj.e607. PMID: 22389337.
Resumo:
The paper presents an approach for mapping of precipitation data. The main goal is to perform spatial predictions and simulations of precipitation fields using geostatistical methods (ordinary kriging, kriging with external drift) as well as machine learning algorithms (neural networks). More practically, the objective is to reproduce simultaneously both the spatial patterns and the extreme values. This objective is best reached by models integrating geostatistics and machine learning algorithms. To demonstrate how such models work, two case studies have been considered: first, a 2-day accumulation of heavy precipitation and second, a 6-day accumulation of extreme orographic precipitation. The first example is used to compare the performance of two optimization algorithms (conjugate gradients and Levenberg-Marquardt) of a neural network for the reproduction of extreme values. Hybrid models, which combine geostatistical and machine learning algorithms, are also treated in this context. The second dataset is used to analyze the contribution of radar Doppler imagery when used as external drift or as input in the models (kriging with external drift and neural networks). Model assessment is carried out by comparing independent validation errors as well as analyzing data patterns.
Resumo:
Cry11Bb is an insecticidal crystal protein produced by Bacillus thuringiensis subsp. medellin during its stationary phase; this ¶-endotoxin is active against dipteran insects and has great potential for mosquito borne disease control. Here, we report the first theoretical model of the tridimensional structure of a Cry11 toxin. The tridimensional structure of the Cry11Bb toxin was obtained by homology modelling on the structures of the Cry1Aa and Cry3Aa toxins. In this work we give a brief description of our model and hypothesize the residues of the Cry11Bb toxin that could be important in receptor recognition and pore formation. This model will serve as a starting point for the design of mutagenesis experiments aimed to the improvement of toxicity, and to provide a new tool for the elucidation of the mechanism of action of these mosquitocidal proteins.
Resumo:
Northern Ireland Fire Brigade - 10th and 11th March 2005
Resumo:
Northern Ireland's Fire and Rescue Service - Consultation
Resumo:
Quinquennial Review of the Fire Authority of Northern Ireland Stage II Report
Resumo:
Protecting native biodiversity against alien invasive species requires powerful methods to anticipate these invasions and to protect native species assumed to be at risk. Here, we describe how species distribution models (SDMs) can be used to identify areas predicted as suitable for rare native species and also predicted as highly susceptible to invasion by alien species, at present and under future climate and land-use scenarios. To assess the condition and dynamics of such conflicts, we developed a combined predictive modelling (CPM) approach, which predicts species distributions by combining two SDMs fitted using subsets of predictors classified as acting at either regional or local scales. We illustrate the CPM approach for an alien invader and a rare species associated to similar habitats in northwest Portugal. Combined models predict a wider variety of potential species responses, providing more informative projections of species distributions and future dynamics than traditional, non-combined models. They also provide more informative insight regarding current and future rare-invasive conflict areas. For our studied species, conflict areas of highest conservation relevance are predicted to decrease over the next decade, supporting previous reports that some invasive species may contract their geographic range and impact due to climate change. More generally, our results highlight the more informative character of the combined approach to address practical issues in conservation and management programs, especially those aimed at mitigating the impact of invasive plants, land-use and climate changes in sensitive regions
Resumo:
Altitudinal tree lines are mainly constrained by temperature, but can also be influenced by factors such as human activity, particularly in the European Alps, where centuries of agricultural use have affected the tree-line. Over the last decades this trend has been reversed due to changing agricultural practices and land-abandonment. We aimed to combine a statistical land-abandonment model with a forest dynamics model, to take into account the combined effects of climate and human land-use on the Alpine tree-line in Switzerland. Land-abandonment probability was expressed by a logistic regression function of degree-day sum, distance from forest edge, soil stoniness, slope, proportion of employees in the secondary and tertiary sectors, proportion of commuters and proportion of full-time farms. This was implemented in the TreeMig spatio-temporal forest model. Distance from forest edge and degree-day sum vary through feed-back from the dynamics part of TreeMig and climate change scenarios, while the other variables remain constant for each grid cell over time. The new model, TreeMig-LAb, was tested on theoretical landscapes, where the variables in the land-abandonment model were varied one by one. This confirmed the strong influence of distance from forest and slope on the abandonment probability. Degree-day sum has a more complex role, with opposite influences on land-abandonment and forest growth. TreeMig-LAb was also applied to a case study area in the Upper Engadine (Swiss Alps), along with a model where abandonment probability was a constant. Two scenarios were used: natural succession only (100% probability) and a probability of abandonment based on past transition proportions in that area (2.1% per decade). The former showed new forest growing in all but the highest-altitude locations. The latter was more realistic as to numbers of newly forested cells, but their location was random and the resulting landscape heterogeneous. Using the logistic regression model gave results consistent with observed patterns of land-abandonment: existing forests expanded and gaps closed, leading to an increasingly homogeneous landscape.
Resumo:
Reliable quantification of the macromolecule signals in short echo-time H-1 MRS spectra is particularly important at high magnetic fields for an accurate quantification of metabolite concentrations (the neurochemical profile) due to effectively increased spectral resolution of the macromolecule components. The purpose of the present study was to assess two approaches of quantification, which take the contribution of macromolecules into account in the quantification step. H-1 spectra were acquired on a 14.1 T/26 cm horizontal scanner on five rats using the ultra-short echo-time SPECIAL (spin echo full intensity acquired localization) spectroscopy sequence. Metabolite concentrations were estimated using LCModel, combined with a simulated basis set of metabolites using published spectral parameters and either the spectrum of macromolecules measured in vivo, using an inversion recovery technique, or baseline simulated by the built-in spline function. The fitted spline function resulted in a smooth approximation of the in vivo macromolecules, but in accordance with previous studies using Subtract-QUEST could not reproduce completely all features of the in vivo spectrum of macromolecules at 14.1 T. As a consequence, the measured macromolecular 'baseline' led to a more accurate and reliable quantification at higher field strengths.