953 resultados para Fermentation process optimization
Resumo:
This work aimed at evaluating the total carotenoids production by a newly isolated Sporidiobolus pararoseus. Bioproduction was carried out in an orbital shaker, using 10% (w/v) of inoculum (25 A degrees C, 180 rpm for 35 h), incubated for 120 h in a dark room. Liquid N(2) and dimethylsulphoxide (DMSO) were used for cell rupture, and carotenoids were extracted with a solution of acetone/methanol (7:3, v/v). Optimization of carotenoids bioproduction was achieved by experimental design technique. Initially, a Plackett-Burman design was used for the screening of the most important factors, after the statistical analysis, a complete second-order design was carried out to optimize the concentration of total carotenoids in a conventional medium. Maximum concentration of 856 mu g/L of total carotenoids was obtained in a medium containing 60 g/L of glucose, 15 g/L of peptone, and 15 g/L of malt extract, 25 A degrees C, initial pH 4.0 and 180 rpm. Fermentation kinetics showed that the maximum concentration of total carotenoids was reached after 102 h of fermentation and that carotenoids bioproduction was associated with cell growth.
Resumo:
The present investigation is the first part of an initiative to prepare a regional map of the natural abundance of selenium in various areas of Brazil, based on the analysis of bean and soil samples. Continuous-flow hydride generation electrothermal atomic absorption spectrometry (HG-ET AAS) with in situ trapping on an iridium-coated graphite tube has been chosen because of the high sensitivity and relative simplicity. The microwave-assisted acid digestion for bean and soil samples was tested for complete recovery of inorganic and organic selenium compounds (selenomethionine). The reduction of Se(VI) to Se(IV) was optimized in order to guarantee that there is no back-oxidation, which is of importance when digested samples are not analyzed immediately after the reduction step. The limits of detection and quantification of the method were 30 ng L(-1) Se and 101 ng L(-1) Se, respectively, corresponding to about 3 ng g(-1) and 10 ng g(-1), respectively, in the solid samples, considering a typical dilution factor of 100 for the digestion process. The results obtained for two certified food reference materials (CRM), soybean and rice, and for a soil and sediment CRM confirmed the validity of the investigated method. The selenium content found in a number of selected bean samples varied between 5.5 +/- 0.4 ng g(-1) and 1726 +/- 55 ng g(-1), and that in soil samples varied between 113 +/- 6.5 ng g(-1) and 1692 +/- 21 ng g(-1). (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A simplex-lattice statistical project was employed to study an optimization method for a preservative system in an ophthalmic suspension of dexametasone and polymyxin B. The assay matrix generated 17 formulas which were differentiated by the preservatives and EDTA (disodium ethylene diamine-tetraacetate), being the independent variable: X-1 = chlorhexidine digluconate (0.010 % w/v); X-2 = phenylethanol (0.500 % w/v); X-3 = EDTA (0.100 % w/v). The dependent variable was the Dvalue obtained from the microbial challenge of the formulas and calculated when the microbial killing process was modeled by an exponential function. The analysis of the dependent variable, performed using the software Design Expert/W, originated cubic equations with terms derived from stepwise adjustment method for the challenging microorganisms: Pseudomonas aeruginosa, Burkholderia cepacia, Staphylococcus aureus, Candida albicans and Aspergillus niger. Besides the mathematical expressions, the response surfaces and the contour graphics were obtained for each assay. The contour graphs obtained were overlaid in order to permit the identification of a region containing the most adequate formulas (graphic strategy), having as representatives: X-1 = 0.10 ( 0.001 % w/v); X-2 = 0.80 (0.400 % w/v); X-3 = 0.10 (0.010 % w/v). Additionally, in order to minimize responses (Dvalue), a numerical strategy corresponding to the use of the desirability function was used, which resulted in the following independent variables combinations: X-1 = 0.25 (0.0025 % w/v); X-2 = 0.75 (0.375 % w/v); X-3 = 0. These formulas, derived from the two strategies (graphic and numerical), were submitted to microbial challenge, and the experimental Dvalue obtained was compared to the theoretical Dvalue calculated from the cubic equation. Both Dvalues were similar to all the assays except that related to Staphylococcus aureus. This microorganism, as well as Pseudomonas aeruginosa, presented intense susceptibility to the formulas independently from the preservative and EDTA concentrations. Both formulas derived from graphic and numerical strategies attained the recommended criteria adopted by the official method. It was concluded that the model proposed allowed the optimization of the formulas in their preservation aspect.
Resumo:
Carbon dioxide released from alcoholic fermentation accounts for 33% of the whole CO(2) involved in the use of ethanol as fuel derived from glucose. As Arthrospira platensis can uptake this greenhouse gas, this study evaluates the use of the CO(2) released from alcoholic fermentation for the production of Arthrospira platensis. For this purpose, this cyanobacterium was cultivated in continuous process using urea as nitrogen source, either using CO(2) from alcoholic fermentation, without any treatment, or using pure CO(2) from cylinder. The experiments were carried out at 120 mu mol photons m(-2) s(-1) in tubular photobioreactor at different dilution rates (0.2 <= D <= 0.8 d(-1)). Using CO(2) from alcoholic fermentation, maximum steady-state cell concentration (2661 +/- 71 mg L(-1)) was achieved at D 0.2 d(-1), whereas higher dilution rate (0.6 d(-1)) was needed to maximize cell productivity (839 mg L(-1) d(-1)). This value was 10% lower than the one obtained with pure CO(2), and there was no significant difference in the biomass protein content. With D 0.8 d(-1), it was possible to obtain 56% +/- 1.5% and 50% +/- 1.2% of protein in the dry biomass, using pure CO(2) and CO(2) from alcoholic fermentation, respectively. These results demonstrate that the use of such cost free CO(2) from alcoholic fermentation as carbon source, associated with low cost nitrogen source, may be a promising way to reduce costs of continuous cultivation of photosynthetic microorganisms, contributing at the same time to mitigate the greenhouse effect. (C) 2011 American Institute of Chemical Engineers Biotechnol. Prog., 27: 650-656, 2011
Resumo:
Aeration and agitation are important variables to ensure effective oxygen transfer rate during aerobic bioprocesses: therefore, the knowledge of the volumetric mass transfer coefficient (k(L)a) is required. In view of selecting the optimum oxygen requirements for extractive fermentation in aqueous two-phase system (ATPS), the k(L)a values in a typical ATPS medium were compared in this work with those in distilled water and in a simple fermentation medium. in the absence of biomass. Aeration and agitation were selected as the independent variables using a 2(2) full factorial design. Both variables showed statistically significant effects on k(L)a, and the highest values of this parameter in both media for simple fermentation (241 s(-1)) and extractive fermentation with ATPS (70.3 s(-1)) were observed at the highest levels of aeration (5 vvm) and agitation (1200 rpm). The k(L)a values were then used to establish mathematical correlations of this response as a function of the process variables. The exponents of the power number (N(3)D(2)) and superficial gas velocity (V(s)) determined in distilled water (alpha = 0.39 and beta = 0.47, respectively) were in reasonable agreement with the ones reported in the literature for several aqueous systems and close to those determined for a simple fermentation medium (alpha=0.38 and beta=0.41). On the other hand, as expected by the increased viscosity in the presence of polyethylene glycol, their values were remarkably higher in a typical medium for extractive fermentation (alpha=0.50 and beta=1.0). A reasonable agreement was found between the experimental data of k(L)a for the three selected systems and the values predicted by the theoretical models, under a wide range of operational conditions. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This work aimed to study the in vitro colonic fermentation profile of unavailable carbohydrates of two different kinds of unripe banana flour and to evaluate their postprandial glycemic responses. The unripe banana mass (UBM), obtained from the cooked pulp of unripe bananas (Musa acuminata, Nanico variety), and the unripe banana starch (UBS), obtained from isolated starch of unripe banana, plantain type (Musa paradisiaca) in natura, were studied. The fermentability of the flours was evaluated by different parameters, using rat inoculum, as well as the glycemic response produced after the ingestion by healthy volunteers. The flours presented high concentration of unavailable carbohydrates, which varied in the content of resistant starch, dietary fiber and indigestible fraction (IF). The in vitro colonic fermentation of the flours was high, 98% for the UBS and 75% for the UBM when expressed by the total amount of SCFA such as acetate, butyrate and propionate in relation to lactulose. The increase in the area under the glycemic curve after ingestion of the flours was 90% lower for the UBS and 40% lower for the UBM than the increase produced after bread intake. These characteristics highlight the potential of UBM and UBS as functional ingredients. However, in vivo studies are necessary in order to evaluate the possible benefic effects of the fermentation on intestinal health.
Resumo:
Exposure to oxygen may induce a lack of functionality of probiotic dairy foods because the anaerobic metabolism of probiotic bacteria compromises during storage the maintenance of their viability to provide benefits to consumer health. Glucose oxidase can constitute a potential alternative to increase the survival of probiotic bacteria in yogurt because it consumes the oxygen permeating to the inside of the pot during storage, thus making it possible to avoid the use of chemical additives. This research aimed to optimize the processing of probiotic yogurt supplemented with glucose oxidase using response surface methodology and to determine the levels of glucose and glucose oxidase that minimize the concentration of dissolved oxygen and maximize the Bifidobacterium longum count by the desirability function. Response surface methodology mathematical models adequately described the process, with adjusted determination coefficients of 83% for the oxygen and 94% for the B. longum. Linear and quadratic effects of the glucose oxidase were reported for the oxygen model, whereas for the B. longum count model an influence of the glucose oxidase at the linear level was observed followed by the quadratic influence of glucose and quadratic effect of glucose oxidase. The desirability function indicated that 62.32 ppm of glucose oxidase and 4.35 ppm of glucose was the best combination of these components for optimization of probiotic yogurt processing. An additional validation experiment was performed and results showed acceptable error between the predicted and experimental results.
Resumo:
Red yeast rice is a pigmented material that is traditionally used in Asia as a food colorant. In addition to food applications, red yeast rice is known in traditional Chinese medicine for its therapeutic actions. The aim of this work was to study the quality interactions during spray drying of extracts from the Monascus ruber van Tiegham fermentation broth. The quality indicators used for the dry powder properties were the levels of monacolin K, ratio of red to yellow pigments, as well as their antioxidant activity. The experiments followed a Box-Behnken design to study the effects of the adjuvant/drug ratio, adjuvant incorporation time, and oulet drying temperature on the pharmacotechnical, chemical, and biological properties of the dry extract. The influences of these factors on the characteristics of the dry powder were evaluated by the bulk density, tapped density, Carr index, Hausner factor, residual moisture content, water activity, antioxidant activity, monacolin K, yellow-to-red pigment ratio, and antioxidant activity. The analysis of variance (ANOVA) on experimental data revealed that an increase in drying temperature significantly increased the dry powder yield and caused an improvement in powder flow properties, which may be related to lower moisture contents. The drying temperature did not affect the monacolin K content in dry powder but showed a complex influence on its antioxidant activity. The increase in drying adjuvant-to-drug ratio affected the yield and also indicated a protective effect on the monacolin K content. The duration of drying adjuvant incorporation had little or negligible effect on powder properties. The dry extracts of red yeast rice showed adequate properties and the process proposed herein can be used to prepare nutraceutical products.
Resumo:
The development of large-scale solid-stale fermentation (SSF) processes is hampered by the lack of simple tools for the design of SSF bioreactors. The use of semifundamental mathematical models to design and operate SSF bioreactors can be complex. In this work, dimensionless design factors are used to predict the effects of scale and of operational variables on the performance of rotating drum bioreactors. The dimensionless design factor (DDF) is a ratio of the rate of heat generation to the rate of heat removal at the time of peak heat production. It can be used to predict maximum temperatures reached within the substrate bed for given operational variables. Alternatively, given the maximum temperature that can be tolerated during the fermentation, it can be used to explore the combinations of operating variables that prevent that temperature from being exceeded. Comparison of the predictions of the DDF approach with literature data for operation of rotating drums suggests that the DDF is a useful tool. The DDF approach was used to explore the consequences of three scale-up strategies on the required air flow rates and maximum temperatures achieved in the substrate bed as the bioreactor size was increased on the basis of geometric similarity. The first of these strategies was to maintain the superficial flow rate of the process air through the drum constant. The second was to maintain the ratio of volumes of air per volume of bioreactor constant. The third strategy was to adjust the air flow rate with increase in scale in such a manner as to maintain constant the maximum temperature attained in the substrate bed during the fermentation. (C) 2000 John Wiley & Sons, Inc.
Resumo:
The suspension Chinese Hamster Ovary cell line, 13-10-302, utilizing the metallothionein (MT) expression system producing recombinant human growth hormone (hGH) was studied in a serum-free and cadmium-free medium at different fermentation scales and modes of operation. Initial experiments were carried out to optimize the concentration of metal addition to induce the MT promoter. Subsequently, the cultivation of the 13-10-302 cell line was scaled up from spinner flasks into bioreactors, and the cultivation duration was extended with fed-batch and perfusion strategies utilizing 180 muM zinc to induce the promoter controlling expression of recombinant hGH. It was shown that a fed-batch process could increase the maximum cell numbers twofold, from 3.3 to 6.3 x 10(6) cell/mL, over those obtained in normal batch fermentations, and this coupled with extended fermentation times resulted in a fourfold increase in final hGH titer, from 135 +/- 15 to 670 +/- 70 mg/L at a specific productivity q(hGH) value of 12 pg cell(-1)d(-1). The addition of sodium butyrate increased the specific productivity of hGH in cells to a value of approximately 48 pg cell(-1)d(-1), resulting in a final hGH titer of over a gram per liter during fed-batch runs. A BioSep acoustic cell recycler was used to retain the cells in the bioreactor during perfusion operation. It was necessary to maintain the specific feeding rates (SFR) above a value of 0.2 vvd/(10(6) cell/mL) to maintain the viability and productivity of the 13-10-302 cells; under these conditions the viable cell number increased to over 107 cell/mL and resulted in a volumetric productivity of over 120 mg(hGH) L(-1)d(-1). Process development described in this work demonstrates cultivation at various scales and sustained high levels of productivity under cadmium free condition in a CHO cell line utilizing an inducible metallothionein expression system. (C) 2004 Wiley Periodicals, Inc.
Resumo:
Metaheuristics performance is highly dependent of the respective parameters which need to be tuned. Parameter tuning may allow a larger flexibility and robustness but requires a careful initialization. The process of defining which parameters setting should be used is not obvious. The values for parameters depend mainly on the problem, the instance to be solved, the search time available to spend in solving the problem, and the required quality of solution. This paper presents a learning module proposal for an autonomous parameterization of Metaheuristics, integrated on a Multi-Agent System for the resolution of Dynamic Scheduling problems. The proposed learning module is inspired on Autonomic Computing Self-Optimization concept, defining that systems must continuously and proactively improve their performance. For the learning implementation it is used Case-based Reasoning, which uses previous similar data to solve new cases. In the use of Case-based Reasoning it is assumed that similar cases have similar solutions. After a literature review on topics used, both AutoDynAgents system and Self-Optimization module are described. Finally, a computational study is presented where the proposed module is evaluated, obtained results are compared with previous ones, some conclusions are reached, and some future work is referred. It is expected that this proposal can be a great contribution for the self-parameterization of Metaheuristics and for the resolution of scheduling problems on dynamic environments.
Resumo:
A QuEChERS method has been developed for the determination of 14 organochlorine pesticides in 14 soils from different Portuguese regions with wide range composition. The extracts were analysed by GC-ECD (where GC-ECD is gas chromatography-electron-capture detector) and confirmed by GC-MS/MS (where MS/MS is tandem mass spectrometry). The organic matter content is a key factor in the process efficiency. An optimization was carried out according to soils organic carbon level, divided in two groups: HS (organic carbon>2.3%) and LS (organic carbon<2.3%). Themethod was validated through linearity, recovery, precision and accuracy studies. The quantification was carried out using a matrixmatched calibration to minimize the existence of the matrix effect. Acceptable recoveries were obtained (70–120%) with a relative standard deviation of ≤16% for the three levels of contamination. The ranges of the limits of detection and of the limits of quantification in soils HS were from 3.42 to 23.77 μg kg−1 and from 11.41 to 79.23 μg kg−1, respectively. For LS soils, the limits of detection ranged from 6.11 to 14.78 μg kg−1 and the limits of quantification from 20.37 to 49.27 μg kg−1. In the 14 collected soil samples only one showed a residue of dieldrin (45.36 μg kg−1) above the limit of quantification. This methodology combines the advantages of QuEChERS, GC-ECD detection and GC-MS/MS confirmation producing a very rapid, sensitive and reliable procedure which can be applied in routine analytical laboratories.
Produção de bioetanol a partir de um resíduo orgânico proveniente da central de compostagem da LIPOR
Resumo:
Mestrado em Engenharia Química
Resumo:
O presente trabalho tem como objectivo o diagnóstico ambiental da empresa Lacticinios do Paiva, S.A, a avaliação da água do processo e da ETARI e o estudo da fermentação do soro de queijo com o intuito de produção de bioetanol. No diagnóstico ambiental da empresa, observou-se que 18.227.731 litros de leite usados anualmente geram 5.031 ton/ano de queijo, 7.204 ton/ano de soro de queijo, 74.201 m3/ano de efluente liquido, 14 ton/ano de plástico e 20 ton/ano de cartão. Os principais problemas com necessidade de optimização são a recuperação de água das lavagens, avaliação da produção de biogás no digestor anaeróbio, recuperação do volume de leite que é desperdiçado na produção de queijo fresco de longa duração, avaliação da eficiência energética da empresa, valorização das natas e do soro de queijo. Decidiu-se neste trabalho avaliar a possibilidade de reciclagem das águas de lavagem, avaliar o funcionamento da ETARI face à legislação existente e estudar a possibilidade de valorização do soro de queijo. Na avaliação das águas de processo das lavagens para posterior reciclagem, verifica-se que relativamente ao pH e aos sólidos suspensos não existe problema, podendo encarar-se a hipótese de reciclagem directa. No entanto, no que respeita à carga orgânica das águas de lavagem do sistema de ultrafiltração do queijo fresco de longa duração, constata-se que esta não poderia ser utilizada novamente, uma vez que apresenta valores elevados de CQO. Para a sua reutilização, será necessário remover a CQO, hipótese que se estudou com resultados positivos. Verificou-se que, um tratamento por adsorção em carvão activado precedido de microfiltração, reduz a CQO de forma significativa permitindo admitir a hipótese de reciclagem da água, nomeadamente para as 1ª e 3ª águas de lavagem. As outras águas teriam necessidade de mais tempo de contacto com o carvão activado. No sentido de avaliar o funcionamento da ETARI, foram analisadas várias correntes da mesma, em particular a do efluente final, no que respeita a parâmetros como: pH, Sólidos Suspensos Totais, Carência Química de Oxigénio, Carência Bioquímica de Oxigénio, Turvação, Nitratos, Fósforo Total, Azoto Kjeldalh, Azoto Amoniacal e Cloretos. Observou-se que os valores para o efluente final da ETARI são os seguintes: pH compreendido entre [7,21 – 8,69], SST entre [65,3 – 3110] mg/L, CQO entre [92,5 – 711,5] mg/L, CBO5 entre [58 – 161] mg/L, NO3- entre [10,8 – 106,7] mg/L, fósforo total entre [8,3 – 64,3] mg/L, turvação entre [67,7 – 733,3] FTU e cloretos entre [459,9 – 619,81] mg/L; pode-se dizer que os parâmetros analisados se encontram quase sempre dentro da gama de valores impostos pela Câmara Municipal de Lamego pelo que o efluente pode ser lançado no Colector Municipal de Cambres. Relativamente à fermentação alcoólica do soro de queijo, verifica-se que a levedura Kluyveromyces Marxianus consegue degradar praticamente todo o açúcar presente no permeado produzindo assim uma quantidade razoável de etanol. Quando se utilizou a levedura Saccharomyces Cerevisiae, a produção de etanol foi muito reduzida, como esperado, dado que esta levedura apresenta dificuldades na metabolização da lactose. Constatou-se assim que a melhor levedura para a fermentação do permeado do soro de queijo é a Kluyveromyces Marxianus, estimando-se em 150 mg a produção de etanol por L de soro.