973 resultados para Failure Prediction
Resumo:
Background: Heart failure is a serious condition estimated to affect 1.5-2.0% of the Australian population with a point prevalence of approximately 1% in people aged 50-59 years, 10% in people aged 65 years or more and over 50% in people aged 85 years or over (National Heart Foundation of Australian and the Cardiac Society of Australia and New Zealand, 2006). Sleep disturbances are a common complaint of persons with heart failure. Disturbances of sleep can worsen heart failure symptoms, impair independence, reduce quality of life and lead to increased health care utilisation in patients with heart failure. Previous studies have identified exercise as a possible treatment for poor sleep in patients without cardiac disease however there is limited evidence of the effect of this form of treatment in heart failure. Aim: The primary objective of this study was to examine the effect of a supervised, hospital-based exercise training programme on subjective sleep quality in heart failure patients. Secondary objectives were to examine the association between changes in sleep quality and changes in depression, exercise performance and body mass index. Methods: The sample for the study was recruited from metropolitan and regional heart failure services across Brisbane, Queensland. Patients with a recent heart failure related hospital admission who met study inclusion criteria were recruited. Participants were screened by specialist heart failure exercise staff at each site to ensure exercise safety prior to study enrolment. Demographic data, medical history, medications, Pittsburgh Sleep Quality Index score, Geriatric Depression Score, exercise performance (six minute walk test), weight and height were collected at Baseline. Pittsburgh Sleep Quality Index score, Geriatric Depression Score, exercise performance and weight were repeated at 3 months. One hundred and six patients admitted to hospital with heart failure were randomly allocated to a 3-month disease-based management programme of education and self-management support including standard exercise advice (Control) or to the same disease management programme as the Control group with the addition of a tailored physical activity program (Intervention). The intervention consisted of 1 hour of aerobic and resistance exercise twice a week. Programs were designed and supervised by an exercise specialist. The main outcome measure was achievement of a clinically significant change (.3 points) in global Pittsburgh Sleep Quality score. Results: Intervention group participants reported significantly greater clinical improvement in global sleep quality than Control (p=0.016). These patients also exhibited significant improvements in component sleep disturbance (p=0.004), component sleep quality (p=0.015) and global sleep quality (p=0.032) after 3 months of supervised exercise intervention. Improvements in sleep quality correlated with improvements in depression (p<0.001) and six minute walk distance (p=0.04). When study results were examined categorically, with subjects classified as either "poor" or "good" sleepers, subjects in the Control group were significantly more likely to report "poor" sleep at 3 months (p=0.039) while Intervention participants were likely to report "good" sleep at this time (p=0.08). Conclusion: Three months of supervised, hospital based, aerobic and resistance exercise training improved subjective sleep quality in patients with heart failure. This is the first randomised controlled trial to examine the role of aerobic and resistance exercise training in the improvement of sleep quality for patients with this disease. While this study establishes exercise as a therapy for poor sleep quality, further research is needed to investigate the effect of exercise training on objective parameters of sleep in this population.
Resumo:
With a monolayer honeycomb-lattice of sp2-hybridized carbon atoms, graphene has demonstrated exceptional electrical, mechanical and thermal properties. One of its promising applications is to create graphene-polymer nanocomposites with tailored mechanical and physical properties. In general, the mechanical properties of graphene nanofiller as well as graphene-polymer interface govern the overall mechanical performance of graphene-polymer nanocomposites. However, the strengthening and toughening mechanisms in these novel nanocomposites have not been well understood. In this work, the deformation and failure of graphene sheet and graphene-polymer interface were investigated using molecular dynamics (MD) simulations. The effect of structural defects on the mechanical properties of graphene and graphene-polymer interface was investigated as well. The results showed that structural defects in graphene (e.g. Stone-Wales defect and multi-vacancy defect) can significantly deteriorate the fracture strength of graphene but may still make full utilization of corresponding strength of graphene and keep the interfacial strength and the overall mechanical performance of graphene-polymer nanocomposites.
Resumo:
Remote monitoring for heart failure has been evaluated in numerous systematic reviews. The aim of this meta-review was to appraise their quality and synthesise results. We electronically searched online databases, performed a forward citation search and hand-searched bibliographies. Systematic reviews of remote monitoring interventions that were used for surveillance of heart failure patients were included. Seven (41%) systematic reviews pooled results for meta-analysis. Eight (47%) considered all non-invasive remote monitoring strategies. Five (29%) focused on telemonitoring. Four (24%) included both non-invasive and invasive technologies. According to AMSTAR criteria, ten (58%) systematic reviews were of poor methodological quality. In high quality reviews, the relative risk of mortality in patients who received remote monitoring ranged from 0.53 (95% CI=0.29-0.96) to 0.88 (95% CI=0.76-1.01). High quality reviews also reported that remote monitoring reduced the relative risk of all-cause (0.52; 95% CI=0.28-0.96 to 0.96; 95% CI=0.90–1.03) and heart failure-related hospitalizations (0.72; 95% CI=0.64–0.81 to RR 0.79; 95% CI=0.67-0.94) and, as a consequence, healthcare costs. As the high quality reviews reported that remote monitoring reduced hospitalizations, mortality and healthcare costs, research efforts should now be directed towards optimising these interventions in preparation for more widespread implementation.
Resumo:
Background/aims: Remote monitoring for heart failure has not only been evaluated in a large number of randomised controlled trials, but also in many systematic reviews and meta-analyses. The aim of this meta-review was to identify, appraise and synthesise existing systematic reviews that have evaluated the effects of remote monitoring in heart failure. Methods: Using a Cochrane methodology, we electronically searched all relevant online databases and search engines, performed a forward citation search as well as hand-searched bibliographies. Only fully published systematic reviews of invasive and/or non-invasive remote monitoring interventions were included. Two reviewers independently extracted data. Results: Sixty-five publications from 3333 citations were identified. Seventeen fulfilled the inclusion and exclusion criteria. Quality varied with A Measurement Tool to Assess Systematic Reviews (AMSTAR scores) ranging from 2 to 11 (mean 5.88). Seven reviews (41%) pooled results from individual studies for meta-analysis. Eight (47%) considered all non-invasive remote monitoring strategies. Four (24%) focused specifically on telemonitoring. Four (24%) included studies investigating both non-invasive and invasive technologies. Population characteristics of the included studies were not reported consistently. Mortality and hospitalisations were the most frequently reported outcomes 12 (70%). Only five reviews (29%) reported healthcare costs and compliance. A high degree of heterogeneity was reported in many of the meta-analyses. Conclusions: These results should be considered in context of two negative RCTs of remote monitoring for heart failure that have been published since the meta-analyses (TIM-HF and Tele-HF). However, high quality reviews demonstrated improved mortality, quality of life, reduction in hospitalisations and healthcare costs.
Resumo:
Awareness to avoid losses and casualties due to rain-induced landslide is increasing in regions that routinely experience heavy rainfall. Improvements in early warning systems against rain-induced landslide such as prediction modelling using rainfall records, is urgently needed in vulnerable regions. The existing warning systems have been applied using stability chart development and real-time displacement measurement on slope surfaces. However, there are still some drawbacks such as: ignorance of rain-induced instability mechanism, mislead prediction due to the probabilistic prediction and short time for evacuation. In this research, a real-time predictive method was proposed to alleviate the drawbacks mentioned above. A case-study soil slope in Indonesia that failed in 2010 during rainfall was used to verify the proposed predictive method. Using the results from the field and laboratory characterizations, numerical analyses can be applied to develop a model of unsaturated residual soils slope with deep cracks and subject to rainwater infiltration. Real-time rainfall measurement in the slope and the prediction of future rainfall are needed. By coupling transient seepage and stability analysis, the variation of safety factor of the slope with time were provided as a basis to develop method for the real-time prediction of the rain-induced instability of slopes. This study shows the proposed prediction method has the potential to be used in an early warning system against landslide hazard, since the FOS value and the timing of the end-result of the prediction can be provided before the actual failure of the case study slope.
Resumo:
Many Australian families are unable to access homeownership. This is because house prices are very high to the severely or seriously unaffordable level. Therefore, many low income families will need to rely on affordable rental housing supply. The Australian governments introduced National Rental Affordability Scheme (NRAS) in July 2008. The scheme aims to increase the supply of affordable rental housing by 50,000 dwellings across Australia by June 2014. It provides financial incentive for investors to purchase new affordable housing that must be rented at a minimum of 20% below the market rent. The scheme has been in place for four years to June 2012. There are debates on the success or failure of the scheme. One argues that the scheme is more successful in Queensland but it failed to meet its aims in NSW. This paper examines NRAS incentive designed to encourage affordable housing supply in Australia and demonstrates reasons for developing properties that are crowded in areas where the land prices are relatively lower in the NSW using a discounted cash flow analysis in a hypothetical case study. The findings suggest that the high land values and the increasing cost of development were the main constraints of implementing the scheme in the NSW and government should not provide a flat rate subsidy which is inadequate to ensure that affordable housing projects in high cost areas.
Resumo:
This paper deals with the failure of high adhesive, low compressive strength, thin layered polymer mortar joints in masonry through a contact modelling in finite element framework. Failure due to combined shear, tensile and compressive stresses are considered through a constitutive damaging contact model that incorporates traction–separation as a function of displacement discontinuity. The modelling method is verified using single and multiple contact analyses of thin mortar layered masonry specimens under shear, tensile and compressive stresses and their combinations. Using this verified method, the failure of thin mortar layered masonry under a range of shear to tension ratios and shear to compression ratios has been examined. Finally, this model is applied to thin bed masonry wallettes for their behaviour under biaxial tension–tension and compression–tension loadings perpendicular and parallel to the bed joints.
Resumo:
This paper proposes a practical prediction procedure for vertical displacement of a Rotarywing Unmanned Aerial Vehicle (RUAV) landing deck in the presence of stochastic sea state disturbances. A proper time series model tending to capture characteristics of the dynamic relationship between an observer and a landing deck is constructed, with model orders determined by a novel principle based on Bayes Information Criterion (BIC) and coefficients identified using the Forgetting Factor Recursive Least Square (FFRLS) method. In addition, a fast-converging online multi-step predictor is developed, which can be implemented more rapidly than the Auto-Regressive (AR) predictor as it requires less memory allocations when updating coefficients. Simulation results demonstrate that the proposed prediction approach exhibits satisfactory prediction performance, making it suitable for integration into ship-helicopter approach and landing guidance systems in consideration of computational capacity of the flight computer.
Resumo:
A method for prediction of the radiation pattern of N strongly coupled antennas with mismatched sources is presented. The method facilitates fast and accurate design of compact arrays. The prediction is based on the measured N-port S parameters of the coupled antennas and the N active element patterns measured in a 50 ω environment. By introducing equivalent power sources, the radiation pattern with excitation by sources with arbitrary impedances and various decoupling and matching networks (DMN) can be accurately predicted without the need for additional measurements. Two experiments were carried out for verification: pattern prediction for parasitic antennas with different loads and for antennas with DMN. The difference between measured and predicted patterns was within 1 to 2 dB.
Resumo:
Organisations are constantly seeking efficiency gains for their business processes in terms of time and cost. Management accounting enables detailed cost reporting of business operations for decision making purposes, although significant effort is required to gather accurate operational data. Process mining, on the other hand, may provide valuable insight into processes through analysis of events recorded in logs by IT systems, but its primary focus is not on cost implications. In this paper, a framework is proposed which aims to exploit the strengths of both fields in order to better support management decisions on cost control. This is achieved by automatically merging cost data with historical data from event logs for the purposes of monitoring, predicting, and reporting process-related costs. The on-demand generation of accurate, relevant and timely cost reports, in a style akin to reports in the area of management accounting, will also be illustrated. This is achieved through extending the open-source process mining framework ProM.
Resumo:
Background Many Australian cities experience large winter increases in deaths and hospitalisations. Flu outbreaks are only part of the problem and inadequate protection from cold weather is a key independent risk factor. Better home insulation has been shown to improve health during winter, but no study has examined whether better personal insulation improves health. Data and Methods We ran a randomised controlled trial of thermal clothing versus usual care. Subjects with heart failure (a group vulnerable to cold) were recruited from a public hospital in Brisbane in winter and followed-up at the end of winter. Those randomised to the intervention received two thermal hats and tops and a digital thermometer. The primary outcome was the number of days in hospital, with secondary outcomes of General Practitioner (GP) visits and self-rated health. Results The mean number of days in hospital per 100 winter days was 2.5 in the intervention group and 1.8 in the usual care group, with a mean difference of 0.7 (95% CI: –1.5, 5.4). The intervention group had 0.2 fewer GP visits on average (95% CI: –0.8, 0.3), and a higher self-rated health, mean improvement –0.3 (95% CI: –0.9, 0.3). The thermal tops were generally well used, but even in cold temperatures the hats were only worn by 30% of subjects. Conclusions Thermal clothes are a cheap and simple intervention, but further work needs to be done on increasing compliance and confirming the health and economic benefits of providing thermals to at-risk groups.
Resumo:
Travel time prediction has long been the topic of transportation research. But most relevant prediction models in the literature are limited to motorways. Travel time prediction on arterial networks is challenging due to involving traffic signals and significant variability of individual vehicle travel time. The limited availability of traffic data from arterial networks makes travel time prediction even more challenging. Recently, there has been significant interest of exploiting Bluetooth data for travel time estimation. This research analysed the real travel time data collected by the Brisbane City Council using the Bluetooth technology on arterials. Databases, including experienced average daily travel time are created and classified for approximately 8 months. Thereafter, based on data characteristics, Seasonal Auto Regressive Integrated Moving Average (SARIMA) modelling is applied on the database for short-term travel time prediction. The SARMIA model not only takes the previous continuous lags into account, but also uses the values from the same time of previous days for travel time prediction. This is carried out by defining a seasonality coefficient which improves the accuracy of travel time prediction in linear models. The accuracy, robustness and transferability of the model are evaluated through comparing the real and predicted values on three sites within Brisbane network. The results contain the detailed validation for different prediction horizons (5 min to 90 minutes). The model performance is evaluated mainly on congested periods and compared to the naive technique of considering the historical average.
Resumo:
This paper presents a rigorous and a reliable analytical procedure using finite element (FE) techniques to study the blast response of laminated glass (LG) panel and predict the failure of its components. The 1st principal stress (σ11) is used as the failure criterion for glass and the von mises stress (σv) is used for the interlayer and sealant joints. The results from the FE analysis for mid-span deflection, energy absorption and the stresses at critical locations of glass, interlayer and structural sealant are presented in the paper. These results compared well with those obtained from a free field blast test reported in the literature. The tensile strength (T) of the glass has a significant influence on the behaviour of the LG panel and should be treated carefully in the analysis. The glass panes absorb about 80% of the blast energy for the treated blast load and this should be minimised in the design.
Resumo:
Background Chlamydia trachomatis is the most commonly diagnosed bacterial sexually transmitted infection in the developed world and diagnosis rates have increased dramatically over the last decade. Repeat infections of chlamydia are very common and may represent re-infection from an untreated partner or treatment failure. The aim of this cohort study is to estimate the proportion of women infected with chlamydia who experience treatment failure after treatment with 1 gram azithromycin. Methods/design This cohort study will follow women diagnosed with chlamydia for up to 56 days post treatment. Women will provide weekly genital specimens for further assay. The primary outcome is the proportion of women who are classified as having treatment failure 28, 42 or 56 days after recruitment. Comprehensive sexual behavior data collection and the detection of Y chromosome DNA and high discriminatory chlamydial genotyping will be used to differentiate between chlamydia re-infection and treatment failure. Azithromycin levels in high-vaginal specimens will be measured using a validated liquid chromatography – tandem mass spectrometry method to assess whether poor azithromycin absorption could be a cause of treatment failure. Chlamydia culture and minimal inhibitory concentrations will be performed to further characterize the chlamydia infections. Discussion Distinguishing between treatment failure and re-infection is important in order to refine treatment recommendations and focus infection control mechanisms. If a large proportion of repeat chlamydia infections are due to antibiotic treatment failure, then international recommendations on chlamydia treatment may need to be re-evaluated. If most are re-infections, then strategies to expedite partner treatment are necessary.
Resumo:
A qualitative analysis of the expected dilatation strain field in the vicinity of an array of grain-boundary (GB) dislocations is presented. The analysis provides a basis for the prediction of the critical current densities (jc) across low-angle YBa2Cu3O7- (YBCO) GBs as a function of their energy. The introduction of the GB energy allows the extension of the analysis to high-angle GBs using established models which predict the GB energy as a function of misorientation angle. The results are compared to published data for jc across [001]-tilt YBCO GBs for the full range of misorientations, showing a good fit. Since the GB energy is directly related to the GB structure, the analysis may allow a generalization of the scaling behavior of jc with the GB energy. © 1995 The American Physical Society.