980 resultados para FLUORESCENCE CORRELATION SPECTROSCOPY
Resumo:
The distribution processes of chlorin e6 (CE) and monoaspartyl-chlorin e6 (MACE) between the outer and inner phospholipid monolayers of 1,2-dioleoyl-phosphatidylcholine (DOPC) vesicles were monitored by 1H NMR spectroscopy through analysis of chemical shifts and line widths of the DOPC vesicle resonances. Chlorin adsorption to the outer vesicle monolayer induced changes in the DOPC 1H NMR spectrum. Most pronounced was a split of the N-methyl choline resonance, allowing for separate analysis of inner and outer vesicle layers. Transbilayer distribution of the chlorin compounds was indicated by time-dependent characteristic spectral changes of the DOPC resonances. Kinetic parameters for the flip-flop processes, that is, half-lives and rate constants, were obtained from the experimental data points. In comparison to CE, MACE transbilayer movement was significantly reduced, with MACE remaining more or less attached to the outer membrane layer. The distribution coefficients for CE and MACE between the vesicular and aqueous phase were determined. Both CE and MACE exhibited a high affinity for the vesicular phase. For CE, a positive correlation was found between transfer rate and increasing molar ratio CE/DOPC. Enhanced membrane rigidity induced by increasing amounts of cholesterol into the model membrane was accompanied by a decrease of CE flip-flop rates across the membrane. The present study shows that the movement of porphyrins across membranes can efficiently be investigated by 1H NMR spectroscopy and that small changes in porphyrin structure can have large effects on membrane kinetics.
Resumo:
The aim of this study was to compare the performance of the DIAGNOdent 2095 with visual examination for occlusal caries detection in permanent and primary molars. The sample comprised 148 permanent human molars and 179 primary human molars. The samples were measured and visually examined three times by two examiners. After measurement, the teeth were histologically prepared and assessed for caries extension. Sensitivity, specificity, accuracy and area under the receiver operating characteristics (ROC) curve were calculated. Intra-class correlation (ICC), unweighted kappa and the Bland and Altman method were used to assess inter- and intra-examiner reproducibility. DIAGNOdent showed higher specificity and lower sensitivity than did visual examination. The ICC values indicated an excellent agreement between the examinations. Kappa values varied from good to excellent for DIAGNOdent but from poor to good for visual examination. In conclusion, the DIAGNOdent may be a useful adjunct to conventional methods for occlusal caries detection.
Resumo:
In general, vascular contributions to the in vivo magnetic resonance (MR) brain spectrum are too small to be relevant. In cerebral uptake studies, however, vascular contributions may constitute a major confounder. MR visibility of vascular Phe was investigated by recording localized spectra from fully oxygenated and well-mixed whole blood. Blood Phe levels determined by MR spectroscopy (MRS) and ion-exchange chromatography showed excellent correlation. In addition, effects of blood flow were shown to have a small effect on signal amplitude with the MRS methodology used. Hence, blood Phe is almost completely MR visible at 1.5 T, even though it is severely broadened at higher fields. Without appropriate correction, cerebral Phe influx in studies of brain Phe uptake in phenylketonuria patients or healthy subjects would appear to be faster and lead to higher levels. Similar effects are envisaged for studies of ethanol or glucose uptake across the blood-brain barrier.
Resumo:
PURPOSE: To prospectively determine reproducibility of magnetic resonance (MR) angiography and MR spectroscopy of deoxymyoglobin in assessment of collateral vessels and tissue perfusion in patients with critical limb ischemia (CLI) and to follow changes in patients undergoing intramuscular vascular endothelial growth factor (pVEGF)-C gene therapy, percutaneous transluminal angioplasty, supervised exercise training, or no therapy. MATERIALS AND METHODS: Study and gene therapy protocols were approved, and all patients gave written informed consent. To determine repeatability and reproducibility, seven patients underwent MR angiography and five underwent MR spectroscopy. The techniques were used to judge disease progress in 12 other patients with or without therapy: MR angiography to help determine change in visualization of collateral vessels and MR spectroscopy to help assess change in perfusion at proximal and distal calf levels. MR angiographic results were subjectively analyzed by three blinded readers. Intraobserver variability was expressed as 95% confidence interval (CI) (n=7); interobserver variability, as kappa statistic (n=15). Reexamination variability of MR spectroscopy was given as 95% CI for subsequent recovery times, and correlation with disease extent was calculated with Kendall taub rank correlation. Fisher-Yates test was used to correlate changes with pressure measurements and clinical course. RESULTS: Intraobserver and interobserver concordance was sensitive for detection of collateral vessels. Intraobserver agreement was 85.7% (95% CI: 42.1%, 99.6%). Interobserver agreement was high for small collateral vessels (kappa=0.74, P <.001) and fair for large collateral vessels (kappa=0.36, P=.002). MR spectroscopy was reproducible (95% CI: +/-26 seconds for proximal, +/-21 seconds for distal) and showed a correlation with disease extent (proximal calf, taub=0.84, P <.001; distal calf, taub=0.68, P=.04). Small collateral vessels increased over time (P=.04) but did not correlate with pressure measurements and clinical course. Recovery time correlated with clinical course (proximal calf, P=.03; distal calf, P=.005). CONCLUSION: MR angiography and MR spectroscopy of deoxymyoglobin can help document changes in visualization of collateral vessels and tissue perfusion in patients with CLI.
Resumo:
PURPOSE To study the apparent diffusivity and its directionality for metabolites of skeletal muscle in humans in vivo by (1) H magnetic resonance spectroscopy. METHODS The diffusion tensors were determined on a 3 Tesla MR system using optimized acquisition and processing methods including an adapted STEAM sequence with orientation-dependent diffusion weighting, pulse-triggering with individually adapted delays, eddy-current correction schemes, median filtering, and simultaneous prior-knowledge fitting of all related spectra. RESULTS The average apparent diffusivities, as well as the fractional anisotropies of taurine (ADCav = 0.74 × 10(-3) s/mm(2) , FA = 0.46), creatine (ADCav = 0.41 × 10(-3) s/mm(2) , FA = 0.33), trimethylammonium compounds (ADCav = 0.48 × 10(-3) s/mm(2) , FA = 0.34), carnosine (ADCav = 0.46 × 10(-3) s/mm(2) , FA = 0.47), and water (ADCav = 1.5 × 10(-3) s/mm(2) , FA = 0.36) were estimated. The diffusivities of most metabolites and water were significantly different from each other. Diffusion was found to be anisotropic and the diffusion tensors showed tensor correlation coefficients close to 1 and were hence found to be essentially coaligned. The magnitudes of apparent metabolite diffusivities were largely ordered according to molecular weight, with taurine as the smallest molecule diffusing fastest, both along and across the fiber direction. CONCLUSION Diffusivities, directional dependence of diffusion and fractional anisotropies of (1) H MRS-visible muscle metabolites were presented. It was shown that metabolites share diffusion directionality with water and have similar fractional anisotropies, hinting at similar diffusion barriers. Magn Reson Med, 2014. © 2014 Wiley Periodicals, Inc.
Resumo:
Abstract We demonstrate the use of Fourier transform infrared spectroscopy (FTIRS) to make quantitative measures of total organic carbon (TOC), total inorganic carbon (TIC) and biogenic silica (BSi) concentrations in sediment. FTIRS is a fast and costeffective technique and only small sediment samples are needed (0.01 g). Statistically significant models were developed using sediment samples from northern Sweden and were applied to sediment records from Sweden, northeast Siberia and Macedonia. The correlation between FTIRS-inferred values and amounts of biogeochemical constituents assessed conventionally varied between r = 0.84–0.99 for TOC, r = 0.85– 0.99 for TIC, and r = 0.68–0.94 for BSi. Because FTIR spectra contain information on a large number of both inorganic and organic components, there is great potential for FTIRS to become an important tool in paleolimnology.
Resumo:
BACKGROUND Cytology is an excellent method with which to diagnose preinvasive lesions of the uterine cervix, but it suffers from limited specificity for clinically significant lesions. Supplementary methods might predict the natural course of the detected lesions. The objective of the current study was to test whether a multicolor fluorescence in situ hybridization (FISH) assay might help to stratify abnormal results of Papanicolaou tests. METHODS A total of 219 liquid-based cytology specimens of low-grade squamous intraepithelial lesions (LSIL), 49 atypical squamous cells of undetermined significance (ASCUS) specimens, 52 high-grade squamous intraepithelial lesion (HSIL) specimens, and 50 normal samples were assessed by FISH with probes for the human papillomavirus (HPV), MYC, and telomerase RNA component (TERC). Subtyping of HPV by polymerase chain reaction (PCR) was performed in a subset of cases (n=206). RESULTS There was a significant correlation found between HPV detection by FISH and PCR (P<.0001). In patients with LSILs, the presence of HPV detected by FISH was significantly associated with disease progression (P<.0001). An increased MYC and/or TERC gene copy number (>2 signals in>10% of cells) prevailed in 43% of ASCUS specimens and was more frequent in HSIL (85%) than in LSIL (33%) (HSIL vs LSIL: P<.0001). Increased TERC gene copy number was significantly correlated with progression of LSIL (P<.01; odds ratio, 7.44; area under the receiver operating characteristic curve, 0.73; positive predictive value, 0.30; negative predictive value, 0.94) CONCLUSIONS: The detection of HPV by FISH analysis is feasible in liquid-based cytology and is significantly correlated with HPV analysis by PCR. The analysis of TERC gene copy number may be useful for risk stratification in patients with LSIL.
Resumo:
Purpose: Homeopathic preparations are used in homeopathy and anthroposophically extended medicine. Previous studies described differences in UV transmission between homeopathic preparations of CuSO4 and controls. The aim of the present study was to investigate whether statistically significant differences can be found between homeopathic verum and placebo globules by UV spectroscopy. Methods: Verum (aconitum 30c, calcium carbonate/quercus e cortice) and placebo globules used in two previous clinical trials were dissolved in distilled water at 10mg/ml 20-23h prior to the measurements. Absorbance was measured at 190 – 340nm with a Shimadzu UV-1800 double beam spectrophotometer. Duplicates of each sample were measured in a randomized order 4 times on each of the 5 measurement days. To correct for differences between measurement days, average absorbance of all samples on one day was deduced from absorbance of the individual samples. The Kruskal-Wallis test was used to determine group differences between the samples, and finally the coding of the samples was revealed. Results: First analysis showed significant differences (p≤0.05) in average UV absorbance at 200 – 290nm between the samples and a tendency of a correlation (p≤0.1) between absorbance and globule weight. More results will be presented at the conference. Conclusion: Since the absorbance of the samples at the wavelengths between 200 and 290nm was small, a number of aspects had to be considered and should be corrected for if they are present when performing UV spectroscopy on homeopathic globules: 1. Exact weighing of the globules. 2. Measurement error of the spectrophotometer at small absorbances. 3. Drift of the spectrophotometer during a measurement day. 4. Differences between measurement days. The question remains what caused the differences in absorbance found in these experiments: the use of the original material for the production of the verum globules, differences in the production of verum and placebo globules, or other context factors.
Resumo:
We present an independent calibration model for the determination of biogenic silica (BSi) in sediments, developed from analysis of synthetic sediment mixtures and application of Fourier transform infrared spectroscopy (FTIRS) and partial least squares regression (PLSR) modeling. In contrast to current FTIRS applications for quantifying BSi, this new calibration is independent from conventional wet-chemical techniques and their associated measurement uncertainties. This approach also removes the need for developing internal calibrations between the two methods for individual sediments records. For the independent calibration, we produced six series of different synthetic sediment mixtures using two purified diatom extracts, with one extract mixed with quartz sand, calcite, 60/40 quartz/calcite and two different natural sediments, and a second extract mixed with one of the natural sediments. A total of 306 samples—51 samples per series—yielded BSi contents ranging from 0 to 100 %. The resulting PLSR calibration model between the FTIR spectral information and the defined BSi concentration of the synthetic sediment mixtures exhibits a strong cross-validated correlation ( R2cv = 0.97) and a low root-mean square error of cross-validation (RMSECV = 4.7 %). Application of the independent calibration to natural lacustrine and marine sediments yields robust BSi reconstructions. At present, the synthetic mixtures do not include the variation in organic matter that occurs in natural samples, which may explain the somewhat lower prediction accuracy of the calibration model for organic-rich samples.
Resumo:
This study aimed to evaluate the effectiveness of fluorescence-based methods (DIAGNOdent, LF; DIAGNOdent pen, LFpen, and VistaProof fluorescence camera, FC) in detecting demineralization and remineralization on smooth surfaces in situ. Ten volunteers wore acrylic palatal appliances, each containing 6 enamel blocks that were demineralized for 14 days by exposure to a 20% sucrose solution and 3 of them were remineralized for 7 days with fluoride dentifrice. Sixty enamel blocks were evaluated at baseline, after demineralization and 30 blocks after remineralization by two examiners using LF, LFpen and FC. They were submitted to surface microhardness (SMH) and cross-sectional microhardness analysis. The integrated loss of surface hardness (ΔKHN) was calculated. The intraclass correlation coefficient for interexaminer reproducibility ranged from 0.21 (FC) to 0.86 (LFpen). SMH, LF and LFpen values presented significant differences among the three phases. However, FC fluorescence values showed no significant differences between the demineralization and remineralization phases. Fluorescence values for baseline, demineralized and remineralized enamel were, respectively, 5.4 ± 1.0, 9.2 ± 2.2 and 7.0 ± 1.5 for LF; 10.5 ± 2.0, 15.0 ± 3.2 and 12.5 ± 2.9 for LFpen, and 1.0 ± 0.0, 1.0 ± 0.1 and 1.0 ± 0.1 for FC. SMH and ΔKHN showed significant differences between demineralization and remineralization phases. There was a negative and significant correlation between SMH and LF and LFpen in the remineralization phase. In conclusion, LF and LFpen devices were effective in detecting demineralization and remineralization on smooth surfaces provoked in situ.
Resumo:
Over the past few decades, the advantages of the visible-near infra-red (VisNIR) diffuse reflectance spectrometer (DRS) method have enabled prediction of soil organic carbon (SOC). In this study, SOC was predicted using regression models for samples taken from three sites (Gununo, Maybar and Anjeni) in Ethiopia. SOC was characterized in laboratory using conventional wet chemistry and VisNIR-DRS methods. Principal component analysis (PCA), principal component regression (PCR) and partial least square regression (PLS) models were developed using Unscrambler X 10.2. PCA results show that the first two components accounted for a minimum of 96% variation which increased for individual sites and with data treatments. Correlation (r), coefficient of determination (R2) and residual prediction deviation (RPD) were used to rate four models built. PLS model (r, R2, RPD) values for Anjeni were 0.9, 0.9 and 3.6; for Gununo values 0.6, 0.3 and 1.2; for Maybar values 0.6, 0.3 and 0.9, and for the three sites values 0.7, 0.6 and 1.5, respectively. PCR model values (r, R2, RPD) for Anjeni were 0.9, 0.8 and 2.7; for Gununo values 0.5, 0.3 and 1; for Maybar values 0.5, 0.1 and 0.7, and for the three sites values 0.7, 0.5 and 1.2, respectively. Comparison and testing of models shows superior performance of PLS to PCR. Models were rated as very poor (Maybar), poor (Gununo and three sites) and excellent (Anjeni). A robust model, Anjeni, is recommended for prediction of SOC in Ethiopia.
Resumo:
In order to harness the unique properties of nanoparticles for novel clinical applications and to modulate their uptake into specific immune cells we designed a new library of homo- and hetero-functional fluorescence-encoded gold nanoparticles (Au-NPs) using different poly(vinyl alcohol) and poly(ethylene glycol)-based polymers for particle coating and stabilization. The encoded particles were fully characterized by UV-Vis and fluorescence spectroscopy, zeta potential and dynamic light scattering. The uptake by human monocyte derived dendritic cells in vitro was studied by confocal laser scanning microscopy and quantified by fluorescence-activated cell sorting and inductively coupled plasma atomic emission spectroscopy. We show how the chemical modification of particle surfaces, for instance by attaching fluorescent dyes, can conceal fundamental particle properties and modulate cellular uptake. In order to mask the influence of fluorescent dyes on cellular uptake while still exploiting its fluorescence for detection, we have created hetero-functionalized Au-NPs, which again show typical particle dependent cellular interactions. Our study clearly prove that the thorough characterization of nanoparticles at each modification step in the engineering process is absolutely essential and that it can be necessary to make substantial adjustments of the particles in order to obtain reliable cellular uptake data, which truly reflects particle properties.
Resumo:
PURPOSE Fundus autofluorescence (AF) is characterized not only by its intensity or excitation and emission spectra but also by the lifetimes of the fluorophores. Fluorescence lifetime is influenced by the fluorophore's microenvironment and may provide information about the metabolic tissue state. We report quantitative and qualitative autofluorescence lifetime imaging of the ocular fundus in mice. METHODS A fluorescence lifetime imaging ophthalmoscope (FLIO) was used to measure fluorescence lifetimes of endogenous fluorophores in the murine retina. FLIO imaging was performed in 1-month-old C57BL/6, BALB/c, and C3A.Cg-Pde6b(+)Prph2(Rd2)/J mice. Measurements were repeated at monthly intervals over the course of 6 months. For correlation with structural changes, an optical coherence tomogram was acquired. RESULTS Fundus autofluorescence lifetime images were readily obtained in all mice. In the short spectral channel (498-560 nm), mean ± SEM AF lifetimes were 956 ± 15 picoseconds (ps) in C57BL/6; 801 ± 35 ps in BALB/c mice; and 882 ± 37 ps in C3A.Cg-Pde6b(+)Prph2(Rd2)/J mice. In the long spectral channel (560-720 nm), mean ± SEM AF lifetimes were 298 ± 14 ps in C57BL/6 mice, 241 ± 10 ps in BALB/c mice, and 288 ± 8 ps in C3A.Cg-Pde6b(+)Prph2(Rd2)/J mice. There was a general decrease in mean AF lifetimes with age. CONCLUSIONS Although fluorescence lifetime values differ among mouse strains, we found little variance within the groups. Fundus autofluorescence lifetime imaging in mice may provide additional information for understanding retinal disease processes and may facilitate monitoring of therapeutic effects in preclinical studies.
Resumo:
AIM To evaluate the performance of a pen‑type laser fluorescence device (DIAGNOdent 2190; LFpen, KaVo, Germany) and bitewing radiographs (BW) for approximal caries detection in permanent and primary teeth. MATERIALS AND METHODS A total of 246 anterior approximal surfaces (102 permanent and 144 primary) were selected. Contact points were simulated using sound teeth. Two examiners assessed all approximal surfaces using LFpen and BW. The teeth were histologically assessed for the reference standard. Optimal cut‑off limits were calculated for LFpen for primary and permanent teeth. Sensitivity, specificity, accuracy and area under the receiver operating characteristic curve (Az) were calculated for D1 (enamel and dentin lesions) and D3 (dentin lesions) thresholds. The reproducibility was assessed by intraclass correlation coefficient (ICC) and Cohen's weighted kappa values. RESULTS For permanent teeth, the LFpen cut‑off were 0- 27 (sound), 28- 33 (enamel caries) and >33 (dentin caries). For primary teeth, the LFpen cut‑off were 0- 7 (sound), 8- 32 (enamelcaries) and >32 (dentin caries). The LFpen presented higher sensitivity values than BW for primary teeth (0.58 vs. 0.32 at D1 and 0.80 vs. 0.47 at D3) and permanent teeth (0.80 vs. 0.57 at D1 and 0.94 vs. 0.51 at D3). Specificity did not show a significant difference between the methods. Rank correlations with histology were 0.59 and 0.83 (LFpen) and 0.36 and 0.70 (BW) for primary and permanent teeth, respectively, considering all lesions. ICC values for LFpen were 0.71 (inter) and 0.86 (intra) for permanent teeth and 0.94 (inter) and 0.90/0.99 for primary teeth. Kappa values for BW were 0.69 (inter) and 0.68/0.90 (intra) for permanent teeth and 0.64 (inter) and 0.89/0.89 for primary teeth. CONCLUSION LFpen presented better reproducibility for primary and permanent teeth and higher accuracy in detecting caries lesions at D1 threshold than BW for permanent teeth. LFpen should be used as an adjunct method for approximal caries detection.
Resumo:
INTRODUCTION Anatomic imaging alone is often inadequate for tuning systemic treatment for individual tumor response. Optically based techniques could potentially contribute to fast and objective response monitoring in personalized cancer therapy. In the present study, we evaluated the feasibility of dual-modality diffuse reflectance spectroscopy-autofluorescence spectroscopy (DRS-AFS) to monitor the effects of systemic treatment in a mouse model for hereditary breast cancer. METHODS Brca1(-/-); p53(-/-) mammary tumors were grown in 36 mice, half of which were treated with a single dose of cisplatin. Changes in the tumor physiology and morphology were measured for a period of 1 week using dual-modality DRS-AFS. Liver and muscle tissues were also measured to distinguish tumor-specific alterations from systemic changes. Model-based analyses were used to derive different optical parameters like the scattering and absorption coefficients, as well as sources of intrinsic fluorescence. Histopathologic analysis was performed for cross-validation with trends in optically based parameters. RESULTS Treated tumors showed a significant decrease in Mie-scattering slope and Mie-to-total scattering fraction and an increase in both fat volume fraction and tissue oxygenation after 2 days of follow-up. Additionally, significant tumor-specific changes in the fluorescence spectra were seen. These longitudinal trends were consistent with changes observed in the histopathologic analysis, such as vital tumor content and formation of fibrosis. CONCLUSIONS This study demonstrates that dual-modality DRS-AFS provides quantitative functional information that corresponds well with the degree of pathologic response. DRS-AFS, in conjunction with other imaging modalities, could be used to optimize systemic cancer treatment on the basis of early individual tumor response.