889 resultados para FILTER
Resumo:
The Robert–Asselin time filter is widely used in numerical models of weather and climate. It successfully suppresses the spurious computational mode associated with the leapfrog time-stepping scheme. Unfortunately, it also weakly suppresses the physical mode and severely degrades the numerical accuracy. These two concomitant problems are shown to occur because the filter does not conserve the mean state, averaged over the three time slices on which it operates. The author proposes a simple modification to the Robert–Asselin filter, which does conserve the three-time-level mean state. When used in conjunction with the leapfrog scheme, the modification vastly reduces the impacts on the physical mode and increases the numerical accuracy for amplitude errors by two orders, yielding third-order accuracy. The modified filter could easily be incorporated into existing general circulation models of the atmosphere and ocean. In principle, it should deliver more faithful simulations at almost no additional computational expense. Alternatively, it may permit the use of longer time steps with no loss of accuracy, reducing the computational expense of a given simulation.
Resumo:
This paper describes the integration of an Utkin observer with the unscented Kalman filter, investigates the performance of the combined observer, termed the unscented Utkin observer, and compares it with an unscented Kalman filter. Simulation tests are performed using a model of a single link robot arm with a revolute elastic joint rotating in a vertical plane. The results indicate that the unscented Utkin observer outperforms the unscented Kalman filter.
Resumo:
A new distributed spam filter system based on mobile agent is proposed in this paper. We introduce the application of mobile agent technology to the spam filter system. The system architecture, the work process, the pivotal technology of the distributed spam filter system based on mobile agent, and the Naive Bayesian filter method are described in detail. The experiment results indicate that the system can prevent spam emails effectively.
Resumo:
This paper presents the experimental results on the low temperature absorption and dispersion properties for a variety of frequently used infrared filter substrate materials. Index of refraction (n) and transmission spectra are presented for a range of temperatures 300-50 K for the Group IV materials silicon (Si) and germanium (Ge), and Group II-VI materials zinc selenide (ZnSe), zinc sulphide (ZnS) and cadmium telluride (CdTe). (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
In this paper we report the observation of drifts in the responsivity of cryogenically cooled InSb detector-based infrared filter radiometers which have very strong wavelength dependence. These drifts can result in the increase or decrease of the response of the filter radiometers by over 5%. The origin of these variations was investigated and was shown to arise due to a thin film of ice formed on the multi-layer bandpass filter used to define the spectral response of the filter radiometer. The thin layer of ice interacts with the characteristics of the filter (which itself consists of a number of thin layers) and modifies the filter spectral transmission thus modifying the response of the filter radiometer of which the filter is part of. These observations are particularly relevant to space instruments which use infrared filter radiometers for earth observation. Debris from the spacecraft engines is known to accumulate on cold surfaces of instruments carried on board. The deposition of this debris on cold filters can modify the spectral response of the instruments, which use these filters to define a spectral response. Crown Copyright (c) 2004 Published by Elsevier B.V. All rights reserved.
Resumo:
A new man-made target tracking algorithm integrating features from (Forward Looking InfraRed) image sequence is presented based on particle filter. Firstly, a multiscale fractal feature is used to enhance targets in FLIR images. Secondly, the gray space feature is defined by Bhattacharyya distance between intensity histograms of the reference target and a sample target from MFF (Multi-scale Fractal Feature) image. Thirdly, the motion feature is obtained by differencing between two MFF images. Fourthly, a fusion coefficient can be automatically obtained by online feature selection method for features integrating based on fuzzy logic. Finally, a particle filtering framework is developed to fulfill the target tracking. Experimental results have shown that the proposed algorithm can accurately track weak or small man-made target in FLIR images with complicated background. The algorithm is effective, robust and satisfied to real time tracking.
Resumo:
Dense deployments of wireless local area networks (WLANs) are becoming a norm in many cities around the world. However, increased interference and traffic demands can severely limit the aggregate throughput achievable unless an effective channel assignment scheme is used. In this work, a simple and effective distributed channel assignment (DCA) scheme is proposed. It is shown that in order to maximise throughput, each access point (AP) simply chooses the channel with the minimum number of active neighbour nodes (i.e. nodes associated with neighbouring APs that have packets to send). However, application of such a scheme to practice depends critically on its ability to estimate the number of neighbour nodes in each channel, for which no practical estimator has been proposed before. In view of this, an extended Kalman filter (EKF) estimator and an estimate of the number of nodes by AP are proposed. These not only provide fast and accurate estimates but can also exploit channel switching information of neighbouring APs. Extensive packet level simulation results show that the proposed minimum neighbour and EKF estimator (MINEK) scheme is highly scalable and can provide significant throughput improvement over other channel assignment schemes.
Resumo:
This paper reports on the design and manufacture of an ultra-wide (5-30µm) infrared edge filter for use in FTIR studies of the low frequency vibrational modes of metallo-proteins. We present details of the spectral design and manufacture of such a filter which meets the demanding bandwidth and transparency requirements of the application, and spectra that present the new data possible with such a filter. A design model of the filter and the materials used in its construction has been developed capable of accurately predicting spectral performance at both 300K and at the reduced operating temperature at 200K. This design model is based on the optical and semiconductor properties of a multilayer filter containing PbTe (IV-VI) layer material in combination with the dielectric dispersion of ZnSe (II-VI) deposited on a CdTe (II-VI) substrate together with the use of BaF2 (II-VII) as an antireflection layer. Comparisons between the computed spectral performance of the model and spectral measurements from manufactured coatings over a wavelength range of 4-30µm and temperature range 300-200K are presented. Finally we present the results of the FTIR measurements of Photosystem II showing the improvement in signal to noise ratio of the measurement due to using the filter, together with a light induced FTIR difference spectrum of Photosystem II.
Resumo:
The introduction of non-toxic fluride compounds as direct replacements for Thorium Fluoride (ThF4) has renewed interest in the use of low index fluoride compounds in high performance infrared filters. This paper reports the results of an investigation into the effects of combining these low index materials, particularly Barium Fluoride (BaF2), with the high index material Lead Telluride (PbTe) in bandpass and edge filters. Infrared filter designs using conventional and the new material ombination are compared, and infrared filters using these material combinations have been manufactured and have been shown to suffer problems with residual stress. A possible solution to this problem utilising Zinc Sulphide (ZnS) layers with compensating compressive stress is discussed.
Resumo:
In a recent paper, Vathsal suggested that a new configuration had been obtained for linear filtering problems, which was distinctly different from the Kalman-Bucy filter. It is shown that this in fact is merely a special case of the filter with a specified input.
Resumo:
A method of designing multi-cavity infrared narrowband filters for bandwidth between 10% and 20% is presended: The method is based on a Tschebyshev prototype. The theoretical indices from these are simulated by Herpin equivalent layers, the outer layers may be also simulated by Herrmann's asymetrical tri-layer. The new algorithm of filter design can easily be implemented in any microcomputer.
Resumo:
Nonpolarizing edge filters have recently becmoe important to separate those IR gas bands used in atmospheric sensing into their P and R branches, namely, the v2 of C02 at a 15µm wavelength. Whereas Thelen has developed all necessary principles for the entire class of nonpolarizing filters it remains difficult to subsittute ither refractive indices (such as infrared) into a visible-region design or assess the effect on consequent performance.
Resumo:
A Kalman filter algorithm has been applied to interpret the optical reflectance excursions during vacuum deposition of infrared coatings and multilayer thin-film filters. The application has been described in detail elsewhere and this paper now reports on-line experience for estimating deposition rate and thickness. The estimation proved sufficiently reliable to firstly 'navigate' regular manufacture (as controlled by a skilled operator) and to subsequently reproduce the skill without interpretation or intervention whilst maintaining exemplary product quality. Optical control by means of this Kalman filter application is therefore considered suitable as a basis for the automated manufacture of infrared coatings and multilayer thin-film filters.