968 resultados para Experimental treatment


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A generalized physicochemical model of the response of marine organisms' calcifying fluids to CO2-induced ocean acidification is proposed. The model is based upon the hypothesis that some marine calcifiers induce calcification by elevating pH, and thus Omega aragonite, of their calcifying fluid by removing protons (H+). The model is explored through two end-member scenarios: one in which a fixed number of H+ is removed from their calcifying fluid, regardless of atmospheric pCO2, and another in which a fixed external-internal proton ratio ([H+]E/[H+]I) is maintained. The model is able to generate the full range of calcification response patterns observed in prior ocean acidification experiments and is consistent with the assertion that organisms' calcification response to ocean acidification is more negative for marine calcifiers that exert weaker control over their calcifying fluid pH. The model is empirically evaluated for the temperate scleractinian coral Astrangia poculata with in situ pH microelectrode measurements of the coral's calcifying fluid under control and acidified conditions. These measurements reveal that (1) the pH of the coral's calcifying fluid is substantially elevated relative to its external seawater under both control and acidified conditions, (2) the coral's [H+]E/[H+]I remains constant under control and acidified conditions, and (3) the coral removes fewer H+ from its calcifying fluid under acidified conditions than under control conditions. Thus, the carbonate system dynamics of A. poculata's calcifying fluid appear to be most consistent with the fixed [H+]E/[H+]I end-member scenario. Similar microelectrode experiments performed on additional taxa are required to assess the model's general applicability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The majority of benthic marine invertebrates have a complex life cycle, during which the pelagic larvae select a suitable substrate, attach to it, and then metamorphose into benthic adults. Anthropogenic ocean acidification (OA) is postulated to affect larval metamorphic success through an altered protein expression pattern (proteome structure) and post-translational modifications. To test this hypothesis, larvae of an economically and ecologically important barnacle species Balanus amphitrite, were cultured from nauplius to the cyprid stage in the present (control) and in the projected elevated concentrations of CO2 for the year 2100 (the OA treatment). Cyprid response to OA was analyzed at the total proteome level as well as two protein post-translational modification (phosphorylation and glycosylation) levels using a 2-DE based proteomic approach. The cyprid proteome showed OA-driven changes. Proteins that were differentially up or down regulated by OA come from three major groups, namely those related to energy-metabolism, respiration, and molecular chaperones, illustrating a potential strategy that the barnacle larvae may employ to tolerate OA stress. The differentially expressed proteins were tentatively identified as OA-responsive, effectively creating unique protein expression signatures for OA scenario of 2100. This study showed the promise of using a sentinel and non-model species to examine the impact of OA at the proteome level.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Changes in olfactory-mediated behaviour caused by elevated CO2 levels in the ocean could affect recruitment to reef fish populations because larval fish become more vulnerable to predation. However, it is currently unclear how elevated CO2 will impact the other key part of the predator-prey interaction - the predators. We investigated the effects of elevated CO2 and reduced pH on olfactory preferences, activity levels and feeding behaviour of a common coral reef meso-predator, the brown dottyback (Pseudochromis fuscus). Predators were exposed to either current-day CO2 levels or one of two elevated CO2 levels (~600 µatm or ~950 µatm) that may occur by 2100 according to climate change predictions. Exposure to elevated CO2 and reduced pH caused a shift from preference to avoidance of the smell of injured prey, with CO2treated predators spending approximately 20% less time in a water stream containing prey odour compared with controls. Furthermore, activity levels of fish was higher in the high CO2 treatment and feeding activity was lower for fish in the mid CO2treatment; indicating that future conditions may potentially reduce the ability of the fish to respond rapidly to fluctuations in food availability. Elevated activity levels of predators in the high CO2 treatment, however, may compensate for reduced olfactory ability, as greater movement facilitated visual detection of food. Our findings show that, at least for the species tested to date, both parties in the predator-prey relationship may be affected by ocean acidification. Although impairment of olfactory-mediated behaviour of predators might reduce the risk of predation for larval fishes, the magnitude of the observed effects of elevated CO2 acidification appear to be more dramatic for prey compared to predators. Thus, it is unlikely that the altered behaviour of predators is sufficient to fully compensate for the effects of ocean acidification on prey mortality.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We examine the effects of seawater pCO2 concentration of 25, 41, and 76 kPa (250, 400, and 750 matm) on the growth rate of a natural assemblage of mixed phytoplankton obtained from a carefully controlled, 14-d mesocosm experiment. Throughout the experiment period, in all enclosures, two phytoplankton taxa (microflagellates and cryptomonads) and two diatom species (Skeletonema costatum and Nitzschia spp.) account for approximately 90% of the phytoplankton community. During the nutrient-replete period from day 9 to day 14 populations of Skeletonema costatum and Nitzschia spp. increased substantially; however, only Skeletonema costatum showed an increase in growth rate with increasing seawater pCO2. Not all diatom species in Korean coastal waters are sensitive to seawater pCO2 under nutrient-replete conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We carried out short term pCO2/pH perturbation experiments in the coastal waters of the South China Sea to evaluate the combined effects of seawater acidification (low pH/high pCO2) and solar UV radiation (UVR, 280-400 nm) on photosynthetic carbon fixation of phytoplankton assemblages. Under photosynthetically active radiation (PAR) alone treatments, reduced pCO2 (190 ppmv) with increased pH resulted in a significant decrease in the photosynthetic carbon fixation rate (about 23%), while enriched pCO2 (700 ppmv) with lowered pH had no significant effect on the photosynthetic performance compared to the ambient level. The apparent photosynthetic efficiency decreased under the reduced pCO2 level, probably due to C-limitation as well as energy being diverged for up-regulation of carbon concentrating mechanisms (CCMs). In the presence of UVR, both UV-A and UV-B caused photosynthetic inhibition, though UV-A appeared to enhance the photosynthetic efficiency under lower PAR levels. UV-B caused less inhibition of photosynthesis under the reduced pCO2 level, probably because of its contribution to the inorganic carbon (Ci)-acquisition processes. Under the seawater acidification conditions (enriched pCO2), both UV-A and UV-B reduced the photosynthetic carbon fixation to higher extents compared to the ambient pCO2 conditions. We conclude that solar UV and seawater acidification could synergistically inhibit photosynthesis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Predicted future CO2 levels have been found to alter sensory responses and behaviour of marine fishes. Changes include increased boldness and activity, loss of behavioural lateralization, altered auditory preferences and impaired olfactory function. Impaired olfactory function makes larval fish attracted to odours they normally avoid, including ones from predators and unfavourable habitats. These behavioural alterations have significant effects on mortality that may have far-reaching implications for population replenishment, community structure and ecosystem function. However, the underlying mechanism linking high CO2 to these diverse responses has been unknown. Here we show that abnormal olfactory preferences and loss of behavioural lateralization exhibited by two species of larval coral reef fish exposed to high CO2 can be rapidly and effectively reversed by treatment with an antagonist of the GABA-A receptor. GABA-A is a major neurotransmitter receptor in the vertebrate brain. Thus, our results indicate that high CO2 interferes with neurotransmitter function, a hitherto unrecognized threat to marine populations and ecosystems. Given the ubiquity and conserved function of GABA-A receptors, we predict that rising CO2 levels could cause sensory and behavioural impairment in a wide range of marine species, especially those that tightly control their acid-base balance through regulatory changes in HCO3 and Cl levels.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An increasing number of studies are now reporting the effects of ocean acidification on a broad range of marine species, processes and systems. Many of these are investigating the sensitive early life-history stages that several major reviews have highlighted as being potentially most susceptible to ocean acidification. Nonetheless there remain few investigations of the effects of ocean acidification on the very earliest, and critical, process of fertilization, and still fewer that have investigated levels of ocean acidification relevant for the coming century. Here we report the effects of near-future levels of ocean acidification (?0.35 pH unit change) on sperm swimming speed, sperm motility, and fertilization kinetics in a population of the Pacific oyster Crassostrea gigas from western Sweden. We found no significant effect of ocean acidification - a result that was well-supported by power analysis. Similar findings from Japan suggest that this may be a globally robust result, and we emphasise the need for experiments on multiple populations from throughout a species' range. We also discuss the importance of sound experimental design and power analysis in meaningful interpretation of non-significant results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the future, marine organisms will face the challenge of coping with multiple environmental changes associated with increased levels of atmospheric Pco2, such as ocean warming and acidification. To predict how organisms may or may not meet these challenges, an in-depth understanding of the physiological and biochemical mechanisms underpinning organismal responses to climate change is needed. Here, we investigate the effects of elevated Pco2 and temperature on the whole-organism and cellular physiology of the periwinkle Littorina littorea. Metabolic rates (measured as respiration rates), adenylate energy nucleotide concentrations and indexes, and end-product metabolite concentrations were measured. Compared with values for control conditions, snails decreased their respiration rate by 31% in response to elevated Pco2 and by 15% in response to a combination of increased Pco2 and temperature. Decreased respiration rates were associated with metabolic reduction and an increase in end-product metabolites in acidified treatments, indicating an increased reliance on anaerobic metabolism. There was also an interactive effect of elevated Pco2 and temperature on total adenylate nucleotides, which was apparently compensated for by the maintenance of adenylate energy charge via AMP deaminase activity. Our findings suggest that marine intertidal organisms are likely to exhibit complex physiological responses to future environmental drivers, with likely negative effects on growth, population dynamics, and, ultimately, ecosystem processes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of increased CO2 partial pressure (pCO2) on the community metabolism (primary production, respiration, and calcification) of a coral community was investigated over periods ranging from 9 to 30 d. The community was set up in an open-top mesocosm within which pCO2 was manipulated (411, 647, and 918 µatm). The effect of increased pCO2 on the rate of calcification of the sand area of the mesocosm was also investigated. The net community primary production (NCP) did not change significantly with respect to pCO2 and was 5.1 ± 0.9 mmol O2 m-2 h-1, Dark respiration (R) increased slightly during the experiment at high pCO2, but this did not affect significantly the NCP:R ratio (1.0 ± 0.2). The rate of calcification exhibited the trend previously reported; it decreased as a function of increasing pCO2 and decreasing aragonite saturation state. This re-emphasizes the predictions that reef calcification is likely to decrease during the next century. The dissolution process of calcareous sand does not seem to be affected by open seawater carbonate chemistry; rather, it seems to be controlled by the biogeochemistry of sediment pore water.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Asian green mussel Perna viridis is tolerant to environmental stress, but its robustness varies between populations from habitats that differ in quality. So far, it is unclear whether local adaptations through stressinduced selection or phenotypic plasticity are responsible for these inter-population differences. We tested for the relevance of both mechanisms by comparing survival under hypoxia in mussels that were transplanted from an anthropogenically impacted (Jakarta Bay, Indonesia) to a natural habitat (Lada Bay, Indonesia) and vice versa. Mussels were retrieved 8 weeks after transplantation and exposed to hypoxia in the laboratory. Additional hypoxia tests were conducted with juvenile mussels collected directly from both sites. To elucidate possible relationships between habitat quality and mussel tolerance, we monitored concentrations of inorganic nutrients, temperature, dissolved oxygen, salinity, phytoplankton density and the mussels' body condition index (BCI) for 20 months before, during and after the experiments. Survival under hypoxia depended mainly on the quality of the habitat where the mussels lived before the hypoxia tests and only to a small degree on their site of origin. Furthermore, stress tolerance was only higher in Jakarta than in Lada Bay mussels when the BCIs were substantially higher, which in turn correlated with the phytoplankton densities. We explain why phenotypic plasticity and high BCIs are more likely the causes of populationspecific differences in hypoxia tolerance in P. viridis than stress-induced selection for robust genotypes. This is relevant to understanding the role of P. viridis as mariculture organism in eutrophic ecosystems and invasive species in the (sub)tropical world.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Acidification of seawater owing to oceanic uptake of atmospheric CO2 originating from human activities such as burning of fossil fuels and land-use changes has raised serious concerns regarding its adverse effects on corals and calcifying communities. Here we demonstrate a net loss of calcium carbonate (CaCO3) material as a result of decreased calcification and increased carbonate dissolution from replicated subtropical coral reef communities (n=3) incubated in continuous-flow mesocosms subject to future seawater conditions. The calcifying community was dominated by the coral Montipora capitata. Daily average community calcification or Net Ecosystem Calcification (NEC=CaCO3 production - dissolution) was positive at 3.3 mmol CaCO3 m-2 h-1 under ambient seawater pCO2 conditions as opposed to negative at -0.04 mmol CaCO3 m-2 h-1 under seawater conditions of double the ambient pCO2. These experimental results provide support for the conclusion that some net calcifying communities could become subject to net dissolution in response to anthropogenic ocean acidification within this century. Nevertheless, individual corals remained healthy, actively calcified (albeit slower than at present rates), and deposited significant amounts of CaCO3 under the prevailing experimental seawater conditions of elevated pCO2.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of decreasing aragonite saturation state (Omega Arag) of seawater (elevated pCO2) on calcification rates of Acropora muricata was studied using nubbins prepared from parent colonies located at two sites of La Saline reef (La Réunion Island, western Indian Ocean): a back-reef site (BR) affected by nutrient-enriched groundwater discharge (mainly nitrate), and a reef flat site (RF) with low terrigenous inputs. Protein and chlorophyll a content of the nubbins, as well as zooxanthellae abundance, were lower at RF than BR. Nubbins were incubated at ~27°C over 2 h under sunlight, in filtered seawater manipulated to get differing initial pCO2 (1,440-340 µatm), Omega Arag (1.4-4.0), and dissolved inorganic carbon (DIC) concentrations (2,100-1,850 µmol kg-1). Increasing DIC concentrations at constant total alkalinity (AT) resulted in a decrease in Omega Arag and an increase in pCO2. AT at the beginning of the incubations was kept at a natural level of 2,193 +- 6 µmol kg-1 (mean +- SD). Net photosynthesis (NP) and calcification were calculated from changes in pH and AT during the incubations. Calcification decrease in response to doubling pCO2 relative to preindustrial level was 22% for RF nubbins. When normalized to surface area of the nubbins, (1) NP and calcification were higher at BR than RF, (2) NP increased in high pCO2 treatments at BR compared to low pCO2 treatments, and (3) calcification was not related to Omega Arag at BR. When normalized to NP, calcification was linearly related to Omega Arag at both sites, and the slopes of the relationships were not significantly different. The increase in NP at BR in the high pCO2 treatments may have increased calcification and thus masked the negative effect of low Omega Arag on calcification. Removing the effect of NP variations at BR showed that calcification declined in a similar manner with decreased Omega Arag (increased pCO2) whatever the nutrient loading.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigated the effect of elevated partial pressure of CO2 (pCO2) on the photosynthesis and growth of four phylotypes (ITS2 types A1, A13, A2, and B1) from the genus Symbiodinium, a diverse dinoflagellate group that is important, both free-living and in symbiosis, for the viability of cnidarians and is thus a potentially important model dinoflagellate group. The response of Symbiodinium to an elevated pCO2 was phylotype-specific. Phylotypes A1 and B1 were largely unaffected by a doubling in pCO2 in contrast, the growth rate of A13 and the photosynthetic capacity of A2 both increased by ~ 60%. In no case was there an effect of ocean acidification (OA) upon respiration (dark- or light-dependent) for any of the phylotypes examined. Our observations suggest that OA might preferentially select among free-living populations of Symbiodinium, with implications for future symbioses that rely on algal acquisition from the environment (i.e., horizontal transmission). Furthermore, the carbon environment within the host could differentially affect the physiology of different Symbiodinium phylotypes. The range of responses we observed also highlights that the choice of species is an important consideration in OA research and that further investigation across phylogenetic diversity, for both the direction of effect and the underlying mechanism(s) involved, is warranted.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present experiments that examined the metamorphosis, growth, and survivorship of larvae from three species of commercially and ecologically valuable shellfish (Mercenaria mercenaria, Argopecten irradians, and Crassostrea virginica) at the levels of CO2 projected to occur during the 21st century and beyond. Under CO2 concentrations estimated to occur later this century (~66 Pa, 650 ppm), M. mercenaria and A. irradians larvae exhibited dramatic declines (>50%) in survivorship as well as significantly delayed metamorphosis and significantly smaller sizes. Although C. virginica larvae also experienced lowered growth and delayed metamorphosis at ~66 Pa CO2, their survival was only diminished at ~152 Pa CO2. The extreme sensitivity of larval stages of shellfish to enhanced levels of CO2 indicates that current and future increases in pelagic CO2 concentrations may deplete or alter the composition of shellfish populations in coastal ecosystems.