534 resultados para Exode comm
Resumo:
Elemental and Pb isotope measurements were performed on leachates and residues from surface sediments and two <50 cm cores (MC04 and MC16) collected along a NE-SW transect through Fram Strait. Geochemical and isotopic properties of residues from surface sediments define three distinct spatial domains within the Strait: 1) the easternmost edge of the Strait; 2) the eastern part of the Strait off the Svalbard margins; and 3) the western part of the Strait, influenced by supplies from Svalbard, the Nordic seas with possible contributions from northwestern Siberian margins, and sea ice and water outflow from the Arctic, respectively. Core MC16, in the third domain beneath the outflowing Arctic waters, spans the Last Glacial Maximum present interval. Sediments from this core were leached to obtain detrital (residues) and exchangeable (leachates) fractions. Detrital supplies to core MC16 are believed to originate mainly from melting of the overlying sea ice and thus can be used to document changes in Arctic sedimentary sources. Detrital 206Pb/204Pb and 208Pb/206Pb ratios illustrate two mixing trends, Trends A and B, corresponding to the pre- and post-Younger Dryas (YD) intervals, respectively. These trends represent binary mixtures with a common end-member (Canadian margins) and either a Siberian (Trend A) or Greenland (Trend B) margin end-member. The YD is marked by an isotopic excursion toward the Canadian end-member, suggesting a very active Beaufort Gyre possibly triggered by massive drainage of the Laurentide ice sheet. Pb isotope compositions of leachates, thought to represent the signature of the overlying water masses, define a unique linear trend coincident with Trend A. This suggests that water masses acquired their signature through exchange with particulate fluxes along the Canadian and Siberian continental margins.
Resumo:
Changes of sea surface temperature (SST) in the subarctic NE Pacific over the last 16,000 calendar years before present (16 kyr BP) have been inferred from the study of C37 alkenone unsaturation in a sediment core from the western Canadian continental slope. Between 16.0 and 11.0 kyr, three distinct cold phases (6-7°C) interrupt two warmer periods (9-10°C). Within the 2sigma range of the radiocarbon based time control, the observed SST oscillations correspond to the Oldest Dryas, the Bolling, the Older Dryas, the Allered, and the Younger Dryas periods in the GISP2 d180 record. These results represent the first high resolution marine paleotemperature estimates off the northern West coast of North America and imply that the climate of this region may be very strongly coupled to that of the North Atlantic. Given the fast rates of SST change (1°C/40-80 yr), such coupling must be controlled by atmospheric transmission of the climate signal.
Resumo:
Intervals of organic C- and carbonate-rich laminated sediments occur in the Sea of Japan with roughly the same frequency as temperature changes observed in Greenland ice cores, providing clear evidence of rapid oceanographic change during the past 36 kyr. Planktonic foraminiferal d18O data suggest that only the laminated sediments deposited during the Last Glacial Maximum (LGM), and perhaps one other interval formed during a period of increased water column stratification. Sedimentary Re and Mo data are consistent with bottom waters that were sulfidic during the LGM and suboxic during other laminated intervals. Results of a numerical model of Corg and Re burial are consistent with a mechanism whereby an increased Corg flux to the seafloor drove oxygen concentrations toward depletion during times of deposition of the suboxic laminated intervals. Such a process could have resulted from increased upwelling driven either by increased deep water formation due to colder and/or more saline surface waters or by stronger northeasterly monsoonal winds.
Resumo:
Relative to the present day, meridional temperature gradients in the Early Eocene age (~56-53 Myr ago) were unusually low, with slightly warmer equatorial regions (Pearson et al., 2007, doi:10.1130/G23175A.1 ) but with much warmer subtropical Arctic (Sluijs et al., 2008, doi:10.1029/2007PA001495) and mid-latitude (Sluijs et al., 2007, doi:10.1038/nature06400) climates. By the end of the Eocene epoch (~34 Myr ago), the first major Antarctic ice sheets had appeared (Zachos et al., 1992, doi:10.1130/0091-7613(1992)020<0569:EOISEO>2.3.CO;2; Barker et al., 2007, doi:10.1016/j.dsr2.2007.07.027), suggesting that major cooling had taken place. Yet the global transition into this icehouse climate remains poorly constrained, as only a few temperature records are available portraying the Cenozoic climatic evolution of the high southern latitudes. Here we present a uniquely continuous and chronostratigraphically well-calibrated TEX86 record of sea surface temperature (SST) from an ocean sediment core in the East Tasman Plateau (palaeolatitude ~65° S). We show that southwest Pacific SSTs rose above present-day tropical values (to ~34° C) during the Early Eocene age (~53 Myr ago) and had gradually decreased to about 21° C by the early Late Eocene age (~36 Myr ago). Our results imply that there was almost no latitudinal SST gradient between subequatorial and subpolar regions during the Early Eocene age (55-50 Myr ago). Thereafter, the latitudinal gradient markedly increased. In theory, if Eocene cooling was largely driven by a decrease in atmospheric greenhouse gas concentration Zachos et al. (2008, doi:10.1038/nature06588), additional processes are required to explain the relative stability of tropical SSTs given that there was more significant cooling at higher latitudes.
Resumo:
From 0 to 277 m at Site 530 are found Holocene to Miocene diatom ooze, nannofossil ooze, marl, clay, and debrisflow deposits; from 277 to 467 m are Miocene to Oligocene mud; from 467 to 1103 m are Eocene to late Albian Cenomanian interbedded mudstone, marlstone, chalk, clastic limestone, sandstone, and black shale in the lower portion; from 1103 to 1121 m are basalts. In the interval from 0 to 467 m, in Holocene to Oligocene pelagic oozes, marl, clay, debris flows, and mud, velocities are 1.5 to 1.8 km/s; below 200 m velocities increase irregularly with increasing depth. From 0 to 100 m, in Holocene to Pleistocene diatom and nannofossil oozes (excluding debris flows), velocities are approximately equivalent to that of the interstitial seawater, and thus acoustic reflections in the upper 100 m are primarily caused by variations in density and porosity. Below 100 or 200 m, acoustic reflections are caused by variations in both velocity and density. From 100 to 467 m, in Miocene-Oligocene nannofossil ooze, clay, marl, debris flows, and mud, acoustic anisotropy irregularly increases to 10%, with 2 to 5% being typical. From 467 to 1103 m in Paleocene to late Albian Cenomanian interbedded mudstone, marlstone, chalk, clastic limestone, and black shale in the lower portion of the hole, velocities range from 1.6 to 5.48 km/s, and acoustic anisotropies are as great as 47% (1.0 km/s) faster horizontally. Mudstone and uncemented sandstone have anisotropies which irregularly increase with increasing depth from 5 to 10% (0.2 km/s). Calcareous mudstones have the greatest anisotropies, typically 35% (0.6 km/s). Below 1103 m, basalt velocities ranged from 4.68 to 4.98 km/s. A typical value is about 4.8 km/s. In situ velocities are calculated from velocity data obtained in the laboratory. These are corrected for in situ temperature, hydrostatic pressure, and porosity rebound (expansion when the overburden pressure is released). These corrections do not include rigidity variations caused by overburden pressures. These corrections affect semiconsolidated sedimentary rocks the most (up to 0.25 km/s faster). These laboratory velocities appear to be greater than the velocities from the sonic log. Reflection coefficients derived from the laboratory data, in general, agree with the major features on the seismic profiles. These indicate more potential reflectors than indicated from the reflection coefficients derived using the Gearhart-Owen Sonic Log from 625 to 940 m, because the Sonic Log data average thin beds. Porosity-density data versus depth for mud, mudstone, and pelagic oozes agree with data for similar sediments as summarized in Hamilton (1976). At depths of about 400 m and about 850 m are zones of relatively higher porosity mudstones, which may suggest anomalously high pore pressure; however, they are more probably caused by variations in grain-size distribution and lithology. Electrical resistivity (horizontal) from 625 to 950 m ranged from about 1.0 to 4.0 ohm-m, in Maestrichtian to Santonian- Coniacian mudstone, marlstone, chalk, clastic limestone, and sandstone. An interstitial-water resistivity curve did not indicate any unexpected lithology or unusual fluid or gas in the pores of the rock. These logs were above the black shale beds. From 0 to 100 m at Sites 530 and 532, the vane shear strength on undisturbed samples of Holocene-Pleistocene diatom and nannofossil ooze uniformly increases from about 80 g/cm**2 to about 800 g/cm**2. From 100 to 300 m, vane shear strength of Pleistocene-Miocene nannofossil ooze, clay, and marl are irregular versus depth with a range of 500 to 2300 g/cm**2; and at Site 532 the vane shear strength appears to decrease irregularly and slightly with increasing depth (gassy zone). Vane shear strength values of gassy samples may not be valid, for the samples may be disturbed as gas evolves, and the sediments may not be gassy at in situ depths.
Resumo:
In an attempt to establish criteria for obtaining reliable K-Ar dates, conventional K-Ar studies of several Deep Sea Drilling Project sites were undertaken. K-Ar dates of these rocks may be subject to inaccuracies as the result of sea-water alteration. Inaccuracies may also result from the presence of excess radiogenic 40Ar trapped in rapidly cooled rocks at the time of their formation. The results obtained for DSDP Leg 34 basalts indicate that lowering of K-Ar dates, which is related to potassium addition by weathering, is a major cause of uncertainty in obtaining reliable K-Ar dates for deep-sea rocks. It could not be determined if the potassium addition to the basalts occurred at the time of formation, t_o, or continuously from t_o to the present. Calculations show that sediment cover is not a significant barrier to the diffusion of potassium into the basalt. 40Ar loss contributes, at least in part, to the lowering of the K-Ar date in rocks that have added potassium. The meaning of the K-Ar results obtained for DSDP Legs 35 and 2 basalts could not be unambiguously established. Because of the problems involved, caution must be used in interpreting the meaning of conventional K-Ar dates for deep-sea rocks.
Resumo:
The hydrothermal mounds on the southern flank of the Galapagos Spreading Center are characterized by the following main features: 1) They are located over a young basement (0.5 to 0.85 m.y. of age) in a region known for its high sedimentation rate (about 5 cm/10**3 y.) because it is part of the equatorial high biological productivity zone. 2) They are located in a region with generally high heat flow (8 to 10 HFU). The highest heat-flow measurements (up to 10**3 HFU) correspond to mound peaks (Williams et al., 1979), where temperatures up to 15°C were measured during a dive of the submersible Alvin (Corliss et al., 1978). 3) They are often located on small vertical faults which displace the basement by a few meters (Lonsdale, 1977) and affect the 25- to 50-meter-thick sediment cover. Most of these characteristics have also been observed in the other three known cases of hydrothermal deposits with mineral parageneses similar to that of the Galapagos mounds. However, the case of the hydrothermal mounds south of the Galapagos Spreading Center is unique because of the unusual thickness of the hydrothermal deposits present. The mounds are composed of several, up to 4.5-meter-thick, layers of green clays which, in one case (Hole 509B), are overlain by about 1.4 meters of Mn-oxide crust. We suspect that such a large accumulation of hydrothermal products results from the "funnelling" of the hydrothermal solutions exiting from a highly permeable basement along the faults. This chapter reports a preliminary study of those green clays collected by hydraulic piston coring of the Galapagos mounds during Deep Sea Drilling Project (DSDP) Leg 70 of the D/V Glomar Challenger. Green clays have also been reported from three presently or recently active hydrothermal areas in or close to spreading centers.
Resumo:
High-resolution down-core analyses of the solid phase content of total barium (Batot) and total organic carbon (TOC) back to 25 kyr B.P. were performed on a gravity core from the upper continental slope off Cape Yubi (Morocco). The observed discrepancy between the two potential paleoproductivity proxies, Batot and TOC, initiated supplementary examinations of the pore water, the geochemistry of the clay fraction, X-ray diffraction analyses, and the application of a sequential Ba extraction method of selected samples. Additionally, we analyzed down-core samples of the planktonic foraminifera Turborotalita quinqueloba and Globorotalia inflata for their Ba/Ca ratios. These analyses, which were performed for the first time on these species, were used to reconstruct past oceanic Ba concentrations. We suggest that in the study area, which is characterized by high accumulation rates, the preserved TOC content is a valuable proxy for past primary productivity, whereas the solid phase Batot contents appear to be affected by other mechanisms and factors. Peaks of total barium content in the clay fraction and of Ba/Ca ratios in the planktonic foraminifera shells found during the Younger Dryas and the Heinrich 1 event are likely to result from increased meltwater influx into the northern North Atlantic. We suggest that Ba-enriched meltwater was transmitted by the eastern boundary current system from higher latitudes to the region of the Canary Islands. Total barium contents of the clay fraction (Batot,clay) and Ba/Ca in planktonic foraminifera shells seem to be reliable proxies for this discharge of meltwater.
Resumo:
We present a suite of new high-resolution records (0-135 ka) representing pulses of aeolian, fluvial, and biogenic sedimentation along the Senegalese continental margin. A multiproxy approach based on rock magnetic, element, and color data was applied on three cores enclosing the present-day northern limit of the ITCZ. A strong episodic aeolian contribution driven by stronger winds and dry conditions and characterized by high hematite and goethite input was revealed north of 13°N. These millennial-scale dust fluxes are synchronous with North Atlantic Heinrich stadials. Fluvial clay input driven by the West African monsoon predominates at 12°N and varies at Dansgaard-Oeschger time scales while marine productivity is strongly enhanced during the African humid periods and marine isotope stage 5. From latitudinal signal variations, we deduce that the last glacial ITCZ summer position was located between core positions at 12°26' and 13°40'N. Furthermore, this work also shows that submillennial periods of aridity over northwest Africa occurred more frequently and farther south than previously thought.
Resumo:
Different source areas, oceanography and climate regimes influenced the clay mineral assemblages and grain size distribution of two sediment cores from the North and South Aegean Sea during the last glacial and the Holocene. In the North Aegean Sea, clay mineral composition is mainly controlled by sea level evolution, melting of southeastern European glaciers, and establishment of the connection between the Black Sea and Aegean Sea. The long-term development of clay mineral assemblages in the South Aegean Sea reflects changes in the Nile discharge and African dust input. At this site, the establishment of pluvial conditions in the Nile catchment during the early to middle Holocene resulted in a substantial rise in smectite/illite ratios. In the late Holocene, stepwise aridification of the southern borderlands caused an increase in windblown sediment material and a decrease in Nile suspended material. The clay mineral records exhibit periodic millennial-scale fluctuations. In the North Aegean Sea, the changes are centred at a period of 1.3-1.8 ka and can be attributed to short-term climate and weathering changes in the northern borderlands. The changes in the South Aegean Sea are centred at periods of 3.2-4.3, 1.9-2.4 and 1.3-1.7 ka reflecting short-term changes in wind strength and Northeast African hydrology.
Resumo:
The continental margin off northeast Australia, comprising the Great Barrier Reef (GBR) platform and Queensland Trough, is the largest tropical mixed siliciclastic/carbonate depositional system in existence. We describe a suite of 35 piston cores and two Ocean Drilling Program (ODP) sites from a 130*240 km rectangular area of the Queensland Trough, the slope and basin setting east of the central GBR platform. Oxygen isotope records, physical property (magnetic susceptibility and greyscale) logs, analyses of bulk carbonate content and radiocarbon ages at these locations are used to construct a high resolution stratigraphy. This information is used to quantify mass accumulation rates (MARs) for siliciclastic and carbonate sediments accumulating in the Queensland Trough over the last 31,000 years. For the slope, highest MARs of siliciclastic sediment occur during transgression (1.0 Million Tonnes per year; MT/yr), and lowest MARs of siliciclastic (<0.1 MT/yr) and carbonate (0.2 MT/yr) sediment occur during sea level lowstand. Carbonate MARs are similar to siliciclastic MARs for transgression and highstand (1.1-1.4 MT/yr). In contrast, for the basin, MARs of siliciclastic (0-0.1 MT/yr) and carbonate sediment (0.2-0.4 MT/yr) are continuously low, and within a factor of two, for lowstand, transgression, and highstand. Generic models for carbonate margins predict that maximum and minimum carbonate MARs on the slope will occur during highstand and lowstand, respectively. Conversely, most models for siliciclastic margins suggest maximum and minimum siliciclastic MARs will occur during lowstand and transgression, respectively. Although carbonate MARs in the Queensland Trough are similar to those predicted for carbonate depositional systems, siliciclastic MARs are the opposite. Given uniform siliciclastic MARs in the basin through time, we conclude that terrigenous material is stored on the shelf during sea level lowstand, and released to the slope during transgression as wave driven currents transport shelf sediment offshore.
Resumo:
Benthic foraminiferal stable isotope records from four high-resolution sediment cores, forming a depth transect between 1237 m and 2303 m on the South Iceland Rise, have been used to reconstruct intermediate and deep water paleoceanographic changes in the northern North Atlantic during the last 21 ka (spanning Termination I and the Holocene). Typically, a sampling resolution of ~100 years is attained. Deglacial core chronologies are accurately tied to North Greenland Ice Core Project (NGRIP) ice core records through the correlation of tephra layers and changes in the percent abundance of Neogloboquadrina pachyderma (sinistral) with transitions in NGRIP. The evolution from the glacial mode of circulation to the present regime is punctuated by two periods with low benthic d13C and d18O values, which do not lie on glacial or Holocene water mass mixing lines. These periods correlate with the late Younger Dryas/Early Holocene (11.5-12.2 ka) and Heinrich Stadial 1 (14.7-16.8 ka) during which time freshwater input and sea-ice formation led to brine rejection both locally and as an overflow exported from the Nordic seas into the northern North Atlantic, as earlier reported by Meland et al. (2008). The export of brine with low ?13C values from the Nordic seas complicates traditional interpretations of low d13C values during the deglaciation as incursions of southern sourced water, although the spatial extent of this brine is uncertain. The records also reveal that the onset of the Younger Dryas was accompanied by an abrupt and transient (~200-300 year duration) decrease in the ventilation of the northern North Atlantic. During the Holocene, Iceland-Scotland Overflow Water only reached its modern flow strength and/or depth over the South Iceland Rise by 7-8 ka, in parallel with surface ocean reorganizations and a cessation in deglacial meltwater input to the North Atlantic.
Resumo:
The surface water hydrography along the western Iberian margin, as part of the North Atlantic's eastern boundary upwelling system, consists of a complex, seasonally variable system of equatorward and poleward surface and subsurface currents and seasonal upwelling. Not much information exists to ascertain if the modern current and productivity patterns subsisted under glacial climate conditions, such as during marine isotope stage (MIS) 2, and how North Atlantic meltwater events, especially Heinrich events, affected them. To help answer these questions we are combining stable isotope records of surface to subsurface dwelling planktonic foraminifer species with sea surface temperature and export productivity data for four cores distributed along the western and southwestern Iberian margin (MD95-2040, MD95-2041, MD99-2336, and MD99-2339). The records reveals that with the exception of the Heinrich events and Greenland Stadial (GS) 4 hydrographic conditions along the western Iberian margin were not much different from the present. During the Last Glacial Maximum (LGM), subtropical surface and subsurface waters penetrated poleward to at least 40.6°N (site MD95-2040). Export productivity was, in general, high on the western margin during the LGM and low in the central Gulf of Cadiz, in agreement with the modern situation. During the Heinrich events and GS 4, on the other hand, productivity was high in the Gulf of Cadiz and suppressed in the upwelling regions along the western margin where a strong halocline inhibited upwelling. Heinrich event 1 had the strongest impact on the hydrography and productivity off Iberia and was the only period when subarctic surface waters were recorded in the central Gulf of Cadiz. South of Lisbon (39°N), the impact of the other Heinrich events was diminished, and not all of them led to a significant cooling in the surface waters. Thus, climatic impacts of Heinrich events highly varied with latitude and the prevailing hydrographic conditions in this region.
Resumo:
In order to monitor the evolution of the British-Irish Ice Sheet (BIIS) and its influence in surface ocean structure during marine isotopic stages (MIS) 2 and 3, we have analyzed the sediments recovered in core MD04-2829CQ (Rosemary Bank, north Rockall Trough, northeast Atlantic) dated between ~41 and ~18 ka B.P. Ice-rafted debris flux and composition, 40Ar/39Ar ages of individual hornblende grains, multispecies planktonic stable isotope records, planktonic foraminifera assemblage data and faunal-based sea surface temperatures (SSTs) demonstrate a close interaction between BIIS dynamics and surface ocean structure and water properties in this region. The core location lies beneath the North Atlantic Current (NAC) and is ideal for monitoring the shifts in the position of its associated oceanic fronts, as recorded by faunal changes. These data reveal a succession of BIIS-sourced iceberg calving events related to low SST, usually synchronous with dramatic changes in the composition of the planktonic foraminifera assemblage and with variations in the stable isotope records of the taxa Neogloboquadrina pachyderma (sinistral coiling) and Globigerina bulloides. The pacing of the calving events, from typically Dansgaard-Oeschger millennial timescales during late MIS 3 to multicentennial cyclicity from ~28 ka B.P., represents the build-up of the BIIS and its growing instability toward Heinrich Event (HE) 2 and the Last Glacial Maximum. Our data confirm the strong coupling between BIIS instabilities and the temperature and salinity of surface waters in the adjacent northeast Atlantic and demonstrate the BIIS's ability to modify the NAC on its flow toward the Nordic Seas. In contrast, subsurface water masses were less affected except during the Greenland stadials that contain HEs, when most intense water column reorganizations occurred simultaneously with the deposition of cream-colored carbonate sourced from the Laurentide Ice Sheet.
Resumo:
An ensemble of new, high-resolution records of surface ocean hydrography from the Indian-Atlantic oceanic gateway, south of Africa, demonstrates recurrent and high-amplitude salinity oscillations in the Agulhas Leakage area during the penultimate glacial-interglacial cycle. A series of millennial-scale salinification events, indicating strengthened salt leakage into the South Atlantic, appear to correlate with abrupt changes in the North Atlantic climate and Atlantic Meridional Overturning Circulation (AMOC). This interhemispheric coupling, which plausibly involved changes in the Hadley Cell and midlatitude westerlies that impacted the interocean transport at the tip of Africa, suggests that the Agulhas Leakage acted as a source of negative buoyancy for the perturbed AMOC, possibly aiding its return to full strength. Our finding points to the Indian-to-Atlantic salt transport as a potentially important modulator of the AMOC during the abrupt climate changes of the Late Pleistocene.