822 resultados para Event-based control
Resumo:
A novel method of matching stiffness and continuous variable damping of an ECAS (electronically controlled air suspension) based on LQG (linear quadratic Gaussian) control was proposed to simultaneously improve the road-friendliness and ride comfort of a two-axle school bus. Taking account of the suspension nonlinearities and target-height-dependent variation in suspension characteristics, a stiffness model of the ECAS mounted on the drive axle of the bus was developed based on thermodynamics and the key parameters were obtained through field tests. By determining the proper range of the target height for the ECAS of the fully-loaded bus based on the design requirements of vehicle body bounce frequency, the control algorithm of the target suspension height (i.e., stiffness) was derived according to driving speed and road roughness. Taking account of the nonlinearities of a continuous variable semi-active damper, the damping force was obtained through the subtraction of the air spring force from the optimum integrated suspension force, which was calculated based on LQG control. Finally, a GA (genetic algorithm)-based matching method between stepped variable damping and stiffness was employed as a benchmark to evaluate the effectiveness of the LQG-based matching method. Simulation results indicate that compared with the GA-based matching method, both dynamic tire force and vehicle body vertical acceleration responses are markedly reduced around the vehicle body bounce frequency employing the LQG-based matching method, with peak values of the dynamic tire force PSD (power spectral density) decreased by 73.6%, 60.8% and 71.9% in the three cases, and corresponding reduction are 71.3%, 59.4% and 68.2% for the vehicle body vertical acceleration. A strong robustness to variation of driving speed and road roughness is also observed for the LQG-based matching method.
Resumo:
The validity of using rainfall characteristics as lumped parameters for investigating the pollutant wash-off process such as first flush occurrence is questionable. This research study introduces an innovative concept of using sector parameters to investigate the relationship between the pollutant wash-off process and different sectors of the runoff hydrograph and rainfall hyetograph. The research outcomes indicated that rainfall depth and rainfall intensity are two key rainfall characteristics which influence the wash-off process compared to the antecedent dry period. Additionally, the rainfall pattern also plays a critical role in the wash-off process and is independent of the catchment characteristics. The knowledge created through this research study provides the ability to select appropriate rainfall events for stormwater quality treatment design based on the required treatment outcomes such as the need to target different sectors of the runoff hydrograph or pollutant species. The study outcomes can also contribute to enhancing stormwater quality modelling and prediction in view of the fact that conventional approaches to stormwater quality estimation is primarily based on rainfall intensity rather than considering other rainfall parameters or solely based on stochastic approaches irrespective of the characteristics of the rainfall event.
Resumo:
In this paper, we consider the problem of position regulation of a class of underactuated rigid-body vehicles that operate within a gravitational field and have fully-actuated attitude. The control objective is to regulate the vehicle position to a manifold of dimension equal to the underactuation degree. We address the problem using Port-Hamiltonian theory, and reduce the associated matching PDEs to a set of algebraic equations using a kinematic identity. The resulting method for control design is constructive. The point within the manifold to which the position is regulated is determined by the action of the potential field and the geometry of the manifold. We illustrate the performance of the controller for an unmanned aerial vehicle with underactuation degree two-a quadrotor helicopter.
Resumo:
With the growing size and variety of social media files on the web, it’s becoming critical to efficiently organize them into clusters for further processing. This paper presents a novel scalable constrained document clustering method that harnesses the power of search engines capable of dealing with large text data. Instead of calculating distance between the documents and all of the clusters’ centroids, a neighborhood of best cluster candidates is chosen using a document ranking scheme. To make the method faster and less memory dependable, the in-memory and in-database processing are combined in a semi-incremental manner. This method has been extensively tested in the social event detection application. Empirical analysis shows that the proposed method is efficient both in computation and memory usage while producing notable accuracy.
Resumo:
The possibility of effective control of the wetting properties of a nanostructured surface consisting of arrays of amorphous carbon nanoparticles capped on carbon nanotubes using the electrowetting technique is demonstrated. By analyzing the electrowetting curves with an equivalent circuit model of the solid/liquid interface, the long-standing problem of control and monitoring of the transition between the "slippy" Cassie state and the "sticky" Wenzel states is resolved. The unique structural properties of the custom-designed nanocomposites with precisely tailored surface energy without using any commonly utilized low-surface-energy (e.g., polymer) conformal coatings enable easy identification of the occurrence of such transition from the optical contrast on the nanostructured surfaces. This approach to precise control of the wetting mode transitions is generic and has an outstanding potential to enable the stable superhydrophobic capability of nanostructured surfaces for numerous applications, such as low-friction microfluidics and self-cleaning.
Resumo:
Control and diagnostics of low-frequency (∼ 500 kHz) inductively coupled plasmas for chemical vapor deposition (CVD) of nano-composite carbon nitride-based films is reported. Relation between the discharge control parameters, plasma electron energy distribution/probability functions (EEDF/EEPF), and elemental composition in the deposited C-N based thin films is investigated. Langmuir probe technique is employed to monitor the plasma density and potential, effective electron temperature, and EEDFs/EEPFs in Ar + N2 + CH4 discharges. It is revealed that varying RF power and gas composition/pressure one can engineer the EEDFs/EEPFs to enhance the desired plasma-chemical gas-phase reactions thus controlling the film chemical structure. Auxiliary diagnostic tools for study of the RF power deposition, plasma composition, stability, and optical emission are discussed as well.
Resumo:
Organisations are constantly seeking new ways to improve operational efficiencies. This research study investigates a novel way to identify potential efficiency gains in business operations by observing how they are carried out in the past and then exploring better ways of executing them by taking into account trade-offs between time, cost and resource utilisation. This paper demonstrates how they can be incorporated in the assessment of alternative process execution scenarios by making use of a cost environment. A genetic algorithm-based approach is proposed to explore and assess alternative process execution scenarios, where the objective function is represented by a comprehensive cost structure that captures different process dimensions. Experiments conducted with different variants of the genetic algorithm evaluate the approach's feasibility. The findings demonstrate that a genetic algorithm-based approach is able to make use of cost reduction as a way to identify improved execution scenarios in terms of reduced case durations and increased resource utilisation. The ultimate aim is to utilise cost-related insights gained from such improved scenarios to put forward recommendations for reducing process-related cost within organisations.
Resumo:
Objective To evaluate methods for monitoring monthly aggregated hospital adverse event data that display clustering, non-linear trends and possible autocorrelation. Design Retrospective audit. Setting The Northern Hospital, Melbourne, Australia. Participants 171,059 patients admitted between January 2001 and December 2006. Measurements The analysis is illustrated with 72 months of patient fall injury data using a modified Shewhart U control chart, and charts derived from a quasi-Poisson generalised linear model (GLM) and a generalised additive mixed model (GAMM) that included an approximate upper control limit. Results The data were overdispersed and displayed a downward trend and possible autocorrelation. The downward trend was followed by a predictable period after December 2003. The GLM-estimated incidence rate ratio was 0.98 (95% CI 0.98 to 0.99) per month. The GAMM-fitted count fell from 12.67 (95% CI 10.05 to 15.97) in January 2001 to 5.23 (95% CI 3.82 to 7.15) in December 2006 (p<0.001). The corresponding values for the GLM were 11.9 and 3.94. Residual plots suggested that the GLM underestimated the rate at the beginning and end of the series and overestimated it in the middle. The data suggested a more rapid rate fall before 2004 and a steady state thereafter, a pattern reflected in the GAMM chart. The approximate upper two-sigma equivalent control limit in the GLM and GAMM charts identified 2 months that showed possible special-cause variation. Conclusion Charts based on GAMM analysis are a suitable alternative to Shewhart U control charts with these data.
Resumo:
Building information models are increasingly being utilised for facility management of large facilities such as critical infrastructures. In such environments, it is valuable to utilise the vast amount of data contained within the building information models to improve access control administration. The use of building information models in access control scenarios can provide 3D visualisation of buildings as well as many other advantages such as automation of essential tasks including path finding, consistency detection, and accessibility verification. However, there is no mathematical model for building information models that can be used to describe and compute these functions. In this paper, we show how graph theory can be utilised as a representation language of building information models and the proposed security related functions. This graph-theoretic representation allows for mathematically representing building information models and performing computations using these functions.
Resumo:
Abnormal event detection has attracted a lot of attention in the computer vision research community during recent years due to the increased focus on automated surveillance systems to improve security in public places. Due to the scarcity of training data and the definition of an abnormality being dependent on context, abnormal event detection is generally formulated as a data-driven approach where activities are modeled in an unsupervised fashion during the training phase. In this work, we use a Gaussian mixture model (GMM) to cluster the activities during the training phase, and propose a Gaussian mixture model based Markov random field (GMM-MRF) to estimate the likelihood scores of new videos in the testing phase. Further-more, we propose two new features: optical acceleration, and the histogram of optical flow gradients; to detect the presence of any abnormal objects and speed violations in the scene. We show that our proposed method outperforms other state of the art abnormal event detection algorithms on publicly available UCSD dataset.
Resumo:
The problem of clustering a large document collection is not only challenged by the number of documents and the number of dimensions, but it is also affected by the number and sizes of the clusters. Traditional clustering methods fail to scale when they need to generate a large number of clusters. Furthermore, when the clusters size in the solution is heterogeneous, i.e. some of the clusters are large in size, the similarity measures tend to degrade. A ranking based clustering method is proposed to deal with these issues in the context of the Social Event Detection task. Ranking scores are used to select a small number of most relevant clusters in order to compare and place a document. Additionally,instead of conventional cluster centroids, cluster patches are proposed to represent clusters, that are hubs-like set of documents. Text, temporal, spatial and visual content information collected from the social event images is utilized in calculating similarity. Results show that these strategies allow us to have a balance between performance and accuracy of the clustering solution gained by the clustering method.
Resumo:
This paper details the initial design and planning of a Field Programmable Gate Array (FPGA) implemented control system that will enable a path planner to interact with a MAVLink based flight computer. The design is aimed at small Unmanned Aircraft Vehicles (UAV) under autonomous operation which are typically subject to constraints arising from limited on-board processing capabilities, power and size. An FPGA implementation for the de- sign is chosen for its potential to address such limitations through low power and high speed in-hardware computation. The MAVLink protocol offers a low bandwidth interface for the FPGA implemented path planner to communicate with an on-board flight computer. A control system plan is presented that is capable of accepting a string of GPS waypoints generated on-board from a previously developed in- hardware Genetic Algorithm (GA) path planner and feeding them to the open source PX4 autopilot, while simultaneously respond- ing with flight status information.
Resumo:
This chapter focuses on the implementation of the TS (Tagaki-Sugino) fuzzy controller for the Doubly Fed Induction Generator (DFIG) based wind generator. The conventional PI control loops for mantaining desired active power and DC capacitor voltage is compared with the TS fuzzy controllers. DFIG system is represented by a third-order model where electromagnetic transients of the stator are neglected. The effectiveness of the TS-fuzzy controller on the rotor speed oscillations and the DC capacitor voltage variations of the DFIG damping controller on converter ratings is also investigated. The results from the time domain simulations are presented to elucidate the effectiveness of the TS-fuzzy controller over the conventional PI controller in the DFIG system. The proposed TS-fuzzy con-troller can improve the fault ride through capability of DFIG compared to the conventional PI controller.