986 resultados para Errors codes
Resumo:
Historical GIS has the potential to re-invigorate our use of statistics from historical censuses and related sources. In particular, areal interpolation can be used to create long-run time-series of spatially detailed data that will enable us to enhance significantly our understanding of geographical change over periods of a century or more. The difficulty with areal interpolation, however, is that the data that it generates are estimates which will inevitably contain some error. This paper describes a technique that allows the automated identification of possible errors at the level of the individual data values.
Resumo:
Scientific computation has unavoidable approximations built into its very fabric. One important source of error that is difficult to detect and control is round-off error propagation which originates from the use of finite precision arithmetic. We propose that there is a need to perform regular numerical `health checks' on scientific codes in order to detect the cancerous effect of round-off error propagation. This is particularly important in scientific codes that are built on legacy software. We advocate the use of the CADNA library as a suitable numerical screening tool. We present a case study to illustrate the practical use of CADNA in scientific codes that are of interest to the Computer Physics Communications readership. In doing so we hope to stimulate a greater awareness of round-off error propagation and present a practical means by which it can be analyzed and managed.
Resumo:
The R-matrix method has proved to be a remarkably stable, robust and efficient technique for solving the close-coupling equations that arise in electron and photon collisions with atoms, ions and molecules. During the last thirty-four years a series of related R-matrix program packages have been published periodically in CPC. These packages are primarily concerned with low-energy scattering where the incident energy is insufficient to ionize the target. In this paper we describe previous term2DRMP,next term a suite of two-dimensional R-matrix propagation programs aimed at creating virtual experiments on high performance and grid architectures to enable the study of electron scattering from H-like atoms and ions at intermediate energies.
Resumo:
From perspective of structure synthesis, certain special geometric constraints, such as joint axes intersecting at one point or perpendicular to each other, are necessary in realizing the end-effector motion of kinematically decoupled parallel manipulators (PMs) along individual motion axes. These requirements are difficult to achieve in the actual system due to assembly errors and manufacturing tolerances. Those errors that violate the geometric constraint requirements are termed “constraint errors”. The constraint errors usually are more troublesome than other manipulator errors because the decoupled motion characteristics of the manipulator may no longer exist and the decoupled kinematic models will be rendered useless due to these constraint errors. Therefore, identification and prevention of these constraint errors in initial design and manufacturing stage are of great significance. In this article, three basic types of constraint errors are identified, and an approach to evaluate the effects of constraint errors on decoupling characteristics of PMs is proposed. This approach is illustrated by a 6-DOF PM with decoupled translation and rotation. The results show that the proposed evaluation method is effective to guide design and assembly.
Resumo:
Suicide attacks have raised the stakes for officers deciding whether or not to shoot a suspect ('Police Officer's Terrorist Dilemma'). Despite high-profile errors we know little about how trust in the police is affected by their response to the terrorist threat. Building on a conceptualisation of lay observers as intuitive signal detection theorists, a general population sample (N= 1153) were presented with scenarios manipulated in terms of suspect status (Armed/Unarmed), officer decision (Shoot/Not Shoot) and outcome severity (e.g. suspect armed with Bomb/Knife; police shoot suspect/ suspect plus child bystander). Supporting predictions, people showed higher trust in officers who made correct decisions. reflecting good discrimination ability and who decided to shoot, reflecting an 'appropriate' response bias given the relative costs and benefits. This latter effect was moderated by (a) outcome severity, suggesting it did not simply reflect a preference for a particular type of action, and (b) preferences for a tough stance towards terrorism indexed by Right-Wing Authoritarianism (RWA). Despite loss of civilian life, failure to prevent minor terror attacks resulted in no loss of trust amongst people low in RWA. whereas among people high in RWA trust was positive when police erroneously shot all unarmed suspect. Relations to alternative definitions of trust and procedural justice research are discussed. Copyright (C),. 2007 John Wiley & Sons, Ltd.
Resumo:
Three experiments examined developmental changes in serial recall of lists of 6 letters, with errors classified as movements, omissions, intrusions, or repetitions. In Experiments 1 and 2, developmental differences between groups of children aged from 7 to 11 years and adults were found in the pattern of serial recall errors. The errors of older participants were more likely to be movements than were those of younger participants, who made more intrusions and omissions. The number of repetition errors did not change with age, and this finding is interpreted in terms of a developmentally invariant postoutput response inhibition process. This interpretation was supported by the findings of Experiment 3, which measured levels of response inhibition in 7-, 9-, and 11-year-olds by comparing recall of lists with and without repeated items. Response inhibition remained developmentally invariant, although older children showed greater response facilitation (improved correct recall of adjacent repeated items). Group differences in the patterns of other errors are accounted for in terms of developmental changes in levels of output forgetting and changes in the efficiency of temporal encoding processes, (C) 2000 Academic Press.
Resumo:
Past measurements of the radiocarbon interhemispheric offset have been restricted to relatively young samples because of a lack of older dendrochronologically secure Southern Hemisphere tree-ring chronologies. The Southern Hemisphere calibration data set SHCal04 earlier than AD 950 utilizes a variable interhemispheric offset derived from measured 2nd millennium AD Southern Hemisphere/Northern Hemisphere sample pairs with the assumption of stable Holocene ocean/ atmosphere interactions. This study extends the range of measured interhemispheric offset values with 20 decadal New Zealand kauri and Irish oak sample pairs from 3 selected time intervals in the 1st millennium AD and is part of a larger program to obtain high-precision Southern Hemisphere 14C data continuously back to 200 BC. We found an average interhemispheric offset of 35 ± 6 yr, which although consistent with previously published 2nd millennium AD measurements, is lower than the offset of 55–58 yr utilized in SHCal04. We concur with McCormac et al. (2008) that the IntCal04 measurement for AD 775 may indeed be slightly too old but also suggest the McCormac results appear excessively young for the interval AD 755–785. In addition, we raise the issue of laboratory bias and calibration errors, and encourage all laboratories to check their consistency with appropriate calibration curves and invest more effort into improving the accuracy of those curves.