910 resultados para Equações diferenciais não lineares


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A presente dissertação de mestrado tem por assunto a representação do comportamento mecânico do concreto sob cargas de curta e longa duração, incluindo efeitos não-lineares. Para tal fim trabalha-se com equações baseadas na teoria do dano contínuo. São propostas equações para o caso triaxial e, baseado nelas, é implementado um programa computacional. Com diversos exemplos verifica-se que: a) A solução numérica aproxima bem os resultados teóricos. b) O comportamento do modelo representa bem as características qualitativas do concreto. c) O modelo permite aproximar bem alguns resultados experimentais, mas ainda deve ser aperfeiçoado, particularmente no que refere-se à identificação de parâmetros.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este trabalho trata do tipo de dado intervalar e da importância da especificação de uma semântica para garantir a correção e a interpretação coerente de resultados gerados, tais como de soluções de equações envolvendo este tipo de dado. Para tanto, realiza um estudo comparativo das semânticas de envoltória intervalar de reais e de número-intervalo, procurando identificar a influência de cada uma sobre definições fundamentais, tais como as das operações aritméticas e a do tipo de solução encontrado. Uma vez caracterizadas as semânticas associadas ao tipo de dado intervalar, o trabalho apresenta resultados que permitem mapear algebricamente a operação de multiplicação de números-intervalo tanto na representação de extremo inferior e extremo superior como na representação por ponto médio e diâmetro. Com base nesses resultados apresenta os mapeamentos das expressões algébricas que definem as potências positivas inteiras tanto para a semântica de número-intervalo como para a de envoltória de reais. Conjugando os resultados obtidos com a semântica de número-intervalo, o trabalho apresenta procedimentos algorítmicos para a determinação de dois tipos de soluções de equações intervalares: solução própria, a obtida diretamente a partir da relação de igualdade estrutural algébrica entre intervalos, e envoltória intervalar de soluções reais, normalmente referenciada como a solução intervalar usual. Exemplos são apresentados para a validação dos procedimentos, bem como para a discussão do significado de cada tipo de solução sob o enfoque semântico.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A equação de complexidade de um algoritmo pode ser expressa em termos de uma equação de recorrência. A partir destas equações obtém-se uma expressão assintótica para a complexidade, provada por indução. Neste trabalho, propõem-se um esquema de solução de equações de recorrência usando equações características que são resolvidas através de um "software" de computação simbólica, resultando em uma expressão algébrica exata para a complexidade. O objetivo é obter uma forma geral de calcular a complexidade de um algoritmo desenvolvido pelo método Divisão-e-Conquista.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neste trabalho o método LTSN é utilizado para resolver a equação de transporte de fótons para uma placa plana heterogênea, modelo de multigrupo, com núcleo de espalhamento de Klein-Nishina, obtendo-se o fluxo de fótons em valores discretos de energia. O fluxo de fótons, juntamente com os parâmetros da placa foram usados para o cálculo da taxa de dose absorvida e do fator de buildup. O método LTSN consiste na aplicação da transformada de Laplace num conjunto de equações de ordenadas discretas, fornece uma solução analítica do sistema de equações lineares algébricas e a construção dos fluxos angulares pela técnica de expansão de Heaviside. Essa formulação foi aplicada ao cálculo de dose absorvida e ao fator de Buildup, considerando cinco valores de energia. Resultados numéricos são apresentados.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O presente trabalho apresenta o estudo e implementação de um algoritmo numérico para análise de escoamentos turbulentos, tridimensionais, transientes, incompressíveis e isotérmicos, através da Simulação de Grande Escalas, empregando o Método de Elementos Finitos. A modelagem matemática do problema baseia-se nas equações de conservação de massa e quantidade de movimento de um fluido quase-incompressível. Adota-se um esquema de Taylor-Galerkin, com integração reduzida e fórmulas analíticas das funções de interpolação, para o elemento hexaédrico de oito nós, com funções lineares para as componentes de velocidade e constante no elemento para a pressão. Para abordar o problema da turbulência, emprega-se a Simulação de Grandes Escalas, com modelo para escalas inferiores à resolução da malha. Foram implementados o modelo clássico de Smagorinsky e o modelo dinâmico de viscosidade turbulenta, inicialmente proposto por Germano et al, 1991. Uma nova metodologia, denominada filtragem por elementos finitos independentes, é proposta e empregada, para o processo de segunda filtragem do modelo dinâmico. O esquema, que utiliza elementos finitos independentes envolvendo cada nó da malha original, apresentou bons resultados com um baixo custo computacional adicional. São apresentados resultados para problemas clássicos, que demonstram a validade do sistema desenvolvido. A aplicabilidade do esquema utilizado, para análise de escoamentos caracterizados por elevados números de Reynolds, é discutida no capítulo final. São apresentadas sugestões para aprimorar o esquema, visando superar as dificuldades encontradas com respeito ao tempo total de processamento, para análise de escoamentos tridimensionais, turbulentos e transientes .

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A resposta impulso é utilizada como ferramenta padrão no estudo direto de sistemas concentrados, discretos e distribuídos de ordem arbitrária. Esta abordagem leva ao desenvolvimento de uma plataforma unificada para a obtenção de respostas dinâmicas. Em particular, as respostas forçadas dos sistemas são decompostas na soma de uma resposta permanente e de uma resposta livre induzida pelos valores iniciais da resposta permanente. A teoria desenvolve-se de maneira geral e direta para sistemas de n-ésima ordem, introduzindo-se a base dinâmica gerada pela resposta impulso na forma padrão e normalizada, sem utilizar-se a formulação de estado, através da qual reduz-se um sistema de ordem superior para um sistema de primeira ordem. Considerou-se sistemas de primeira ordem a fim de acompanhar-se os muitos resultados apresentados na literatura através da formulação de espaço de estado. Os métodos para o cálculo da resposta impulso foram classificados em espectrais, não espectrais e numéricos. A ênfase é dada aos métodos não espectrais, pois a resposta impulso admite uma fórmula fechada que requer o uso de três equações características do tipo algébrica, diferencial e em diferenças Realizou-se simulações numéricas onde foram apresentados modelos vibratórios clássicos e não clássicos. Os sistemas considerados foram sistemas do tipo concentrado, discreto e distribuído. Os resultados da decomposição da resposta dinâmica de sistemas concentrados diante de cargas harmônicas e não harmônicas foram apresentados em detalhe. A decomposição para o caso discreto foi desenvolvida utilizando-se os esquemas de integração numérica de Adams-Basforth, Strömer e Numerov. Para sistemas distribuídos, foi considerado o modelo de Euler-Bernoulli com força axial, sujeito a entradas oscilatórias com amplitude triangular, pulso e harmônica. As soluções permanentes foram calculadas com o uso da função de Green espacial. A resposta impulso foi aproximada com o uso do método espectral.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neste trabalho, duas equações modedlo na área da dinâmica de gases rarefeitos, são derivadas a partir de algumas soluções exatas da equação linearizada de Boltzmann homogênea e não homogênea. Em adição, uma versão analítca do método de ordenadas discretas é usado para resolver problemas clássicos nesta área, descritos pelo "Modelo S". Resultados numéricos são apresentados para os problemas de fluxo de Couette, fluxo de Poiseuille, "Creep" Térmico, Deslizamento Térmico e problema de Kramers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O uso da mecânica de fluidos computacional no estudo de processos envolvendo o escoamento de fluidos poliméricos está cada vez mais presente nas indústrias de transformação de polímeros. Um código computacional voltado a esta função, para que possa ser aplicado com sucesso, deve levar a predições mais próximas possível da realidade (modelagem), de uma forma relativamente rápida e eficiente (simulação). Em relação à etapa de modelagem, o ponto chave é a seleção de uma equação constitutiva que represente bem as características reológicas do fluido, dentre as diversas opções existentes. Para a etapa de simulação, ou seja, a resolução numérica das equações do modelo, existem diversas metodologias encontradas na literatura, cada qual com suas vantagens e desvantagens. Neste tópico se enquadra o trabalho em questão, que propõe uma nova metodologia para a resolução das equações governantes do escoamento de fluidos viscoelásticos. Esta se baseia no método dos volumes finitos, usando o arranjo co-localizado para as variáveis do problema, e na utilização de aproximações de alta ordem para os fluxos médios lineares e não-lineares e para outros termos não lineares que surgem da discretização das equações constitutivas. Nesta metodologia, trabalha-se com os valores médios das variáveis nos volumes durante todo o processo de resolução, sendo que os valores pontuais são obtidos ao final do procedimento via deconvolução. A solução do sistema de equações não lineares, resultante da discretização das equações, é feita de forma simultânea, usando o método de Newton São mostrados então, resultados da aplicação da metodologia proposta em problemas envolvendo escoamentos de fluidos newtonianos e fluidos viscoelásticos. Para descrever o comportamento reológico destes últimos, são usadas duas equações constitutivas, que são o modelo de Oldroyd-B e o modelo de Phan-Thien-Tanner Simplificado. Por estes resultados pode-se ver que a metodologia é muito promissora, apresentando algumas vantagens frente às metodologias convencionais em volumes finitos. A implementação atual da metodologia desenvolvida está restrita a malhas uniformes e, consequentemente, soluções para problemas com geometrias complexas, que necessitam de refinamento localizado da malha, foram obtidas somente para baixos números de Weissenberg, devido a limitação do custo computacional. Esta restrição pode ser contornada, tornando o seu uso competitivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este trabalho tem como objetivo desenvolver e empregar técnicas e estruturas de dados agrupadas visando paralelizar os métodos do subespaço de Krylov, fazendo-se uso de diversas ferramentas e abordagens. A partir dos resultados é feita uma análise comparativa de desemvpenho destas ferramentas e abordagens. As paralelizações aqui desenvolvidas foram projetadas para serem executadas em um arquitetura formada por um agregado de máquinas indepentes e multiprocessadas (Cluster), ou seja , são considerados o paralelismo e intra-nodos. Para auxiliar a programação paralela em clusters foram, e estão sendo, desenvolvidas diferentes ferramentas (bibliotecas) que visam a exploração dos dois níveis de paralelismo existentes neste tipo de arquitetura. Neste trabalho emprega-se diferentes bibliotecas de troca de mensagens e de criação de threads para a exploração do paralelismo inter-nodos e intra-nodos. As bibliotecas adotadas são o DECK e o MPICH e a Pthread. Um dos itens a serem analisados nestes trabalho é acomparação do desempenho obtido com essas bibliotecas.O outro item é a análise da influência no desemepnho quando quando tulizadas múltiplas threads no paralelismo em clusters multiprocessados. Os métodos paralelizados nesse trabalho são o Gradiente Conjugação (GC) e o Resíduo Mínmo Generalizado (GMRES), quepodem ser adotados, respectivamente, para solução de sistemas de equações lineares sintéticos positivos e definidos e não simétricas. Tais sistemas surgem da discretização, por exemplo, dos modelos da hidrodinâmica e do transporte de massa que estão sendo desenvolvidos no GMCPAD. A utilização desses métodos é justificada pelo fato de serem métodos iterativos, o que os torna adequados à solução de sistemas de equações esparsas e de grande porte. Na solução desses sistemas através desses métodos iterativos paralelizados faz-se necessário o particionamento do domínio do problema, o qual deve ser feito visando um bom balanceamento de carga e minimização das fronteiras entre os sub-domínios. A estrutura de dados desenvolvida para os métodos paralelizados nesse trabalho permite que eles sejam adotados para solução de sistemas de equações gerados a partir de qualquer tipo de particionamento, pois o formato de armazenamento de dados adotado supre qualquer tipo de dependência de dados. Além disso, nesse trabalho são adotadas duas estratégias de ordenação para as comunicações, estratégias essas que podem ser importantes quando se considera a portabilidade das paralelizações para máquinas interligadas por redes de interconexão com buffer de tamanho insuficiente para evitar a ocorrência de dealock. Os resultados obtidos nessa dissertação contribuem nos trabalhos do GMCPAD, pois as paralelizações são adotadas em aplicações que estão sendo desenvolvidas no grupo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neste trabalho são provadas algumas estimativas de erro em espaços para as aproximações de Galerkin para a solução do sistema de equações de Navier-Stokes. Mostra-se que o erro decresce em proporção inversa aos autovalores do operador de Stokes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Um dos problemas teóricos mais importantes da Física de Partículas de Altas Energias é a investigação de efeitos de alta densidade na Cromodinâmica Quântica (QCD), que é a teoria que descreve as interações fortes. Tais efeitos são importantes pois determinam os observáveis em colisõesde altas energias. Em processos hadrônicos de energia suficientemente alta, espera-se a formação de sistemas densos o suficiente para que efeitos não lineares de QCD passem a ser significativos na descrição e na unitarização da seção de choque. Na descrição de processos de espalhamento de altas energias, evidências experimentais indicam que os hádrons são constituídos por partículas puntuais, as quais chamamos de pártons. Os pártons carregam uma fração x do momentum total do hádron, e são de dois tipos, quarks e glúons. Na interação entre as partículas ocorre a troca de momentum, definida como Q2. A descrição perturbativa padrão para a evolução dinâmica das distribuições de quarks q(x, Q2) e glúons g(x, Q2), pode ser dada pelas equações de evolução DGLAP, e tem obtido sucesso na descrição dos resultados experimentais para as presentes energias. Na evolução DGLAP, são considerados apenas processos de emissão, como a emissão de um glúon por um quark, o decaimento de um glúon em um par de quarks ou em um par de glúons Estes processos de emissão tendem a aumentar a densidade de pártons na região de pequeno momentum, levando a um crescimento ilimitado das distribuições partônicas para x -+ O. Assim, é esperado que o crescimento da densidade de pártons leve a interação e recombinação destas partículas, dando origem a termos não lineares nas equações de evolução. O resultado seria um processo de saturação das distribuições de pártons na região de alta energia e pequena fração de momentum. Os efeitos que dão origem à redução do crescimento das distribuições de quarks e glúons em relação a evolução linear são chamados genericamente de efeitos de sombreamento. Um dos aspectos fenomenológicosinteressantes a ser investigado no regime cinemático abordado acima é o processo Drell-Yan de alta energia, o qual consiste em processos de espalhamento pp, pA e AA com a produção de pares de léptons. Com o advento dos novos aceleradores, novos resultados experimentais estarão disponíveis na literatura relacionados com este processo. Em nosso trabalho investigamos os efeitos das correções de unitariedade em processos pp, bem como os efeitos devido a presença do meio nuclear em colisõespA e AA, nas distribuições de quarks e glúons, para a descrição da seção de choque diferencial para o processo Drell-Yan em colisõespp, pA e AA, para energias existentes nos novos aceleradores RHIC (Relativistic Heavy Ion Collider) e LHC (Large Ion Collider). Os efeitos de alta densidade são baseados no formalismo de Glauber-Mueller. Os resultados aqui apresentados mostram que os efeitos de alta densidade nas distribuições partônicas são importantes para altas energias, pois a descrição da seção de choque para o processo Drell-Yan, quando os efeitos de alta densidade são considerados, apresenta significativas diferenças da descrição onde não considera-se tais efeitos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neste trabalho utiliza-se como sistema dinâmico o circuito eletrônico que integra o sistema de equações acopladas de Rossler modificado. Este sistema possui uma nãolinearidade dada por uma função linear por partes e apresenta comportamento caótico para certos valores dos seus parâmetros. Isto e evidenciado pela rota de dobramento de período obtida variando-se um dos parâmetros do sistema. A caracterização experimental da dinâmica do sistema Rossler modificado e realizada através do diagrama de bifurcações. Apresenta-se uma fundamentação teórica de sistemas dinâmicos introduzindo conceitos importantes tais como atratores estranhos, variedades invariantes e tamb em uma análise da estabilidade de comportamentos assintóticos como pontos fixos e ciclos limites. Para uma caracterização métrica do caos, apresenta-se a definção dos expoentes de Lyapunov. São introduzidos também os expoentes de Lyapunov condicionais e transversais, que estão relacionados com a teoria de sincronizção de sistemas caóticos. A partir de uma montagem mestre-escravo, onde dois osciladores de Rossler estão acoplados unidirecionalmente, introduz-se a de nição de sincronização idêntica, sincronização de fase e variedade de sincronização. Demonstra-se a possibilidade de sincronização em uma rede de osciladores caóticos de Rossler, acoplados simetricamente via acoplamento de primeiros vizinhos. A rede composta por seis osciladores mostrou ser adequada pelo fato de apresentar uma rica estrutura espacial e, ao mesmo tempo, ser experimentalmente implementável. Além da sincronização global (osciladores identicamente sincronizados), obtém-se a sincronização parcial, onde parte dos osciladores sincronizam entre si e a outra parte não o faz. Esse tipo de sincronização abre a possibilidade da formação de padrões de sincronização e, portanto, exibe uma rica estrutura de comportamentos dinâmicos. A sincronização parcial e investigada em detalhes e apresentam-se vários resultados. A principal ferramenta utilizada na análise experimental e numérica e a inspeção visual do gráfico yi yj , fazendo todas as combinações entre elementos diferentes (i e j) da rede. Na análise numérica obtém-se como resultado complementar o máximo expoente de Lyapunov transversal, que descreve a estabilidade da variedade de sincronização global.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nesta tese são estimadas funções não lineares de importação e exportação para o Brasil, utilizando a metodologia de redes neurais artificiais, a partir de dados trimestrais, no período de 1978 a 1999. Com relação às importações, partindo-se da hipótese de país pequeno, as estimações são feitas para a demanda de importações totais, de bens intermediários e de material elétrico. Para as exportações, o pressuposto de país pequeno, num contexto de concorrência monopolística, é utilizado, de maneira que as estimações são feitas para a oferta e demanda por exportações brasileiras. As séries selecionadas são as exportações totais, as exportações de manufaturados e as exportações de material elétrico. A metodologia adotada para as importações procura visualizar a não linearidade presente nas séries de comércio exterior e encontrar a topologia de rede que melhor represente o comportamento dos dados, a partir de um processo de validação do período analisado. Procura observar, também, a sensibilidade das saídas das redes a estímulos nas variáveis de entrada, dado a dado e por formação de clusters. Semelhante método é utilizado para as exportações, com a ressalva que, diante de um problema de simultaneidade, o processo de ajuste das redes e análise da sensibilidade é realizado a partir de uma adaptação do método de equações simultâneas de dois estágios. Os principais resultados para as importações mostram que os dados apresentam-se de maneira não linear, e que ocorreu uma ruptura no comportamento dos dados em 1989 e 1994. Sobretudo a partir dos anos 90, as variáveis que se mostram mais significativas são o PIB e a taxa de câmbio, seguidas da variável utilização de capacidade produtiva, que se mostra com pouca relevância Para o período de 1978 a 1988, que apresenta um reduzido impacto das variáveis, a taxa de câmbio é relevante, na explicação do comportamento das importações brasileiras, seguida da utilização de capacidade produtiva, que demonstra-se significativa, apenas, para a série de bens intermediários. Para as exportações, os dados, também, se apresentam de maneira não linear, com rupturas no seu comportamento no final da década de 80 e meados de 1994. Especificamente, para a oferta e a demanda, as variáveis mais importantes foram a taxa de câmbio real e o PIB mundial, respectivamente. No todo, as séries mais importantes na explicação das importações e exportações foram a importação total e de bens intermediários e a exportação total e de manufaturados. Tanto para as importações, quanto para as exportações, os resultados mais expressivos foram obtidos para os dados mais agregados. Por fim, com relação às equações das exportações brasileiras, houve uma superioridade de ajuste e significância das variáveis das equações de demanda, frente às de oferta, em explicar os movimentos das exportações brasileiras.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este trabalho visa realizar o estudo do comportamento dinâmico de um eixo rotor flexível, modelado segundo a teoria de Euler-Bernoulli e caracterizar as respostas periódicas de sistemas LTI (sistemas lineares invariantes no tempo) e sistemas fracamente não lineares de ordem arbitrária. Para tanto, é utilizada a base dinâmica gerada pela resposta impulso ou solução fundamental. O comportamento dinâmico de um eixo rotor flexível foi discutido em termos da função de Green espacial e calculada de maneira não-modal. Foi realizado um estudo do problema de autovalor para o caso de um um eixo rotor biapoiado. As freqüências são obtidas e os modos escritos em termos da base dinâmica e da velocidade de rotação. As respostas periódicas de sistemas LTI, utilizadas nas aproximações com sistemas fracamente não lineares, são obtidas, independentemente da ordem do sistema, como um operador integral onde o núcleo é a função de Green T-periódica. Esta função é caracterizada em termos das propriedades de continuidade, periodicidade e salto da função de Green T-periódica, e da base dinâmica Simulações foram realizadas para sistemas concentrados, matriciais e escalares, com o objetivo de mostrar a validade da metodologia desenvolvida com as propriedades da função de Green T-periódica. Foi abordado um modelo não-linear para uma centrífuga utilizada na indústria textil [Starzinski, 1977].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este trabalho cuida de avaliar a eficiência do mercado de opções de ações da bolsa de valores de são Paulo (BOVESPA). A avaliação é feita através do modelo Black-Scholes, e traz como principal novidade diversas estimativas de volatilidade. Portanto torna-se um teste conjunto da eficiência do mercado, do modelo Black-Scholes e das diversas estimativas de volatilidade. O objetivo principal ~ determinar a volatilidade que gera o melhor retorno , isto é , aponta a maior ineficiência do mercado. Foram utilizadas opções de Paranapanema-pp e Petrobr's-pp no per(odo de novembro de 1987 a outubro de 1988. Dois testes de eficiência foram realizados para cada volatilidade estimada . Em ambos observou-se que o mercado é ineficiente, e no segundo obtivemos evidência de que uma das estimativas de volatilidade gera um retorno maio