970 resultados para Equação de Ginzburg-Landau


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We introduce a one-dimensional version of the Kitaev model consisting of spins on a two-legged ladder and characterized by Z(2) invariants on the plaquettes of the ladder. We map the model to a fermionic system and identify the topological sectors associated with different Z2 patterns in terms of fermion occupation numbers. Within these different sectors, we investigate the effect of a linear quench across a quantum critical point. We study the dominant behavior of the system by employing a Landau-Zener-type analysis of the effective Hamiltonian in the low-energy subspace for which the effective quenching can sometimes be non-linear. We show that the quenching leads to a residual energy which scales as a power of the quenching rate, and that the power depends on the topological sectors and their symmetry properties in a non-trivial way. This behavior is consistent with the general theory of quantum quenching, but with the correlation length exponent nu being different in different sectors. Copyright (C) EPLA, 2010

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the Nernst effect in a mesoscopic two-dimensional electron system (2DES) at low magnetic fields, before the onset of Landau level quantization. The overall magnitude of the Nernst signal agrees well with semiclassical predictions. We observe reproducible mesoscopic fluctuations in the signal that diminish significantly with an increase in temperature. We also show that the Nernst effect exhibits an anomalous component that is correlated with an oscillatory Hall effect. This behavior may be able to distinguish between different spin-correlated states in the 2DES.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present results for one-loop matching coefficients between continuum four-fermion operators, defined in the Naive Dimensional Regularization scheme, and staggered fermion operators of various types. We calculate diagrams involving gluon exchange between quark fines, and ''penguin'' diagrams containing quark loops. For the former we use Landau-gauge operators, with and without O(a) improvement, and including the tadpole improvement suggested by Lepage and Mackenzie. For the latter we use gauge-invariant operators. Combined with existing results for two-loop anomalous dimension matrices and one-loop matching coefficients, our results allow a lattice calculation of the amplitudes for KKBAR mixing and K --> pipi decays with all corrections of O(g2) included. We also discuss the mixing of DELTAS = 1 operators with lower dimension operators, and show that, with staggered fermions, only a single lower dimension operator need be removed by non-perturbative subtraction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two topical subjects related with the effect of magnetic field on electrical conduction and the metal-insulator transition are discussed. The first topic is an electronic phase transition in graphite, which is interpreted as a manifestation of a nestingtype instability inherent to a one-dimensional narrow Landau sub-band. The second topic is spin-dependent tranport in III-V based diluted magnetic semiconductors; in particular, a large negative magnetoresistance observed in the vicinity of metal-nonmetal transition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We discuss a many-body Hamiltonian with two- and three-body interactions in two dimensions introduced recently by Murthy, Bhaduri and Sen. Apart from an analysis of some exact solutions in the many-body system, we analyse in detail the two-body problem which is completely solvable. We show that the solution of the two-body problem reduces to solving a known differential equation due to Heun. We show that the two-body spectrum becomes remarkably simple for large interaction strengths and the level structure resembles that of the Landau levels. We also clarify the 'ultraviolet' regularization which is needed to define an inverse-square potential properly and discuss its implications for our model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dynamics of three liquid crystals, 4'(pentyloxy)-4-biphenylcarbonitrile (5-OCB), 4'-pentyl-4-biphenylcarbonitrile (5-CB), and 1-isothiocyanato-(4-propylcyclohexyl)benzene (3-CHBT), are investigated from very short time (similar to1 ps) to very long time (>100 ns) as a function of temperature using optical heterodyne detected optical Kerr effect experiments. For all three liquid crystals, the data decay exponentially only on the longest time scale (> several ns). The temperature dependence of the long time scale exponential decays is described well by the Landau-de Gennes theory of the randomization of pseudonematic domains that exist in the isotropic phase of liquid crystals near the isotropic to nematic phase transition. At short time, all three liquid crystals display power law decays. Over the full range of times, the data for all three liquid crystals are fit with a model function that contains a short time power law. The power law exponents for the three liquid crystals range between 0.63 and 0.76, and the power law exponents are temperature independent over a wide range of temperatures. Integration of the fitting function gives the empirical polarizability-polarizability (orientational) correlation function. A preliminary theoretical treatment of collective motions yields a correlation function that indicates that the data can decay as a power law at short times. The power law component of the decay reflects intradomain dynamics. (C) 2002 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using a hot wire in a turbulent boundary layer in air, an experimental study has been made of the frequent periods of activity (to be called ‘bursts’) noticed in a turbulent signal that has been passed through a narrow band-pass filter. Although definitive identification of bursts presents difficulties, it is found that a reasonable characteristic value for the mean interval between such bursts is consistent, at the same Reynolds number, with the mean burst periods measured by Kline et al. (1967), using hydrogen-bubble techniques in water. However, data over the wider Reynolds number range covered here show that, even in the wall or inner layer, the mean burst period scales with outer rather than inner variables; and that the intervals are distributed according to the log normal law. It is suggested that these ‘bursts’ are to be identified with the ‘spottiness’ of Landau & Kolmogorov, and the high-frequency intermittency observed by Batchelor & Townsend. It is also concluded that the dynamics of the energy balance in a turbulent boundary layer can be understood only on the basis of a coupling between the inner and outer layers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the fate of spin-1/2 spiral-ordered two-dimensional quantum antiferromagnets that are disordered by quantum fluctuations. A crucial role is played by the topological point defects of the spiral phase, which are known to have a Z(2) character. Previous works established that a nontrivial quantum spin-liquid phase results when the spiral is disordered without proliferating the Z(2) vortices. Here, we show that when the spiral is disordered by proliferating and condensing these vortices, valence-bond solid ordering occurs due to quantum Berry phase effects. We develop a general theory for this latter phase transition and apply it to a lattice model. This transition potentially provides a new example of a Landau-forbidden deconfined quantum critical point.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using the fact the BTZ black hole is a quotient of AdS(3) we show that classical string propagation in the BTZ background is integrable. We construct the flat connection and its monodromy matrix which generates the non-local charges. From examining the general behaviour of the eigen values of the monodromy matrix we determine the set of integral equations which constrain them. These equations imply that each classical solution is characterized by a density function in the complex plane. For classical solutions which correspond to geodesics and winding strings we solve for the eigen values of the monodromy matrix explicitly and show that geodesics correspond to zero density in the complex plane. We solve the integral equations for BMN and magnon like solutions and obtain their dispersion relation. We show that the set of integral equations which constrain the eigen values of the monodromy matrix can be identified with the continuum limit of the Bethe equations of a twisted SL(2, R) spin chain at one loop. The Landau-Lifshitz equations from the spin chain can also be identified with the sigma model equations of motion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Homogeneous thin films of Sr(0.6)Ca(0.4)TiO(3) (SCT40) and asymmetric multilayer of SrTiO(3) (STO) and CaTiO(3) (CTO) were fabricated on Pt/Ti/SiO(2)/Si substrates by using pulsed laser deposition technique. The electrical behavior of films was observed within a temperature range of 153 K-373 K. A feeble dielectric peak of SCT40 thin film at 273 K is justified as paraelectric to antiferroelectric phase transition. Moreover, the Curie-Weiss temperature, determined from the epsilon'(T) data above the transition temperature is found to be negative. Using Landau theory, the negative Curie-Weiss temperature is interpreted in terms of an antiferroelectric transition. The asymmetric multilayer exhibits a broad dielectric peak at 273 K. and is attributed to interdiffusion at several interfaces of multilayer. The average dielectric constants for homogeneous Sr(0.6)Ca(0.4)TiO(3) films (similar to 650) and asymmetric multilayered films (similar to 350) at room temperature are recognized as a consequence of grain size effect. Small frequency dispersion in the real part of the dielectric constants and relatively low dielectric losses for both cases ensure high quality of the films applicable for next generation integrated devices. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One characteristic feature of the athermal beta -> omega transformation is the short time scale of the transformation. So far, no clear understanding of this issue exists. Here we construct a model that includes contributions from a Landau sixth-order free energy density, kinetic energy due to displacement, and the Rayleigh dissipation function to account for the dissipation arising from the rapid movement of the parent product interface during rapid nucleation. We also include the contribution from omega-like fluctuations to local stress. The model shows that the transformation is complete on a time scale comparable to the velocity of sound. The estimated nucleation rate is several orders higher than that for diffusion-controlled transformations. The model predicts that the athermal omega phase is limited to a certain range of alloying composition. The estimated nucleation rate and the size of ``isothermal'' particles beyond 17% Nb are also consistent with experimental results. The model provides an explanation for the reprecipitation process of the omega particles in the ``cleared'' channels formed during deformation of omega-forming alloys. The model also predicts that acoustic emission should be detectable during the formation of the athermal phase. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years a number of white dwarfs have been observed with very high surface magnetic fields. We can expect that the magnetic field in the core of these stars would be much higher (similar to 10(14) G). In this paper, we analytically study the effect of high magnetic field on relativistic cold electron, and hence its effect on the stability and the mass-radius relation of a magnetic white dwarf. In strong magnetic fields, the equation of state of the Fermi gas is modified and Landau quantization comes into play. For relatively very high magnetic fields (with respect to the average energy density of matter) the number of Landau levels is restricted to one or two. We analyze the equation of states for magnetized electron degenerate gas analytically and attempt to understand the conditions in which transitions from the zeroth Landau level to first Landau level occurs. We also find the effect of the strong magnetic field on the star collapsing to a white dwarf, and the mass-radius relation of the resulting star. We obtain an interesting theoretical result that it is possible to have white dwarfs with mass more than the mass set by Chandrasekhar limit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider a relativistic, degenerate electron gas at zero temperature under the influence of a strong, uniform, static magnetic field, neglecting any form of interactions. Since the density of states for the electrons changes due to the presence of the magnetic field (which gives rise to Landau quantization), the corresponding equation of state also gets modified. In order to investigate the effect of very strong magnetic field, we focus only on systems in which a maximum of either one, two, or three Landau level(s) is/are occupied. This is important since, if a very large number of Landau levels are filled, it implies a very low magnetic field strength which yields back Chandrasekhar's celebrated nonmagnetic results. The maximum number of occupied Landau levels is fixed by the correct choice of two parameters, namely, the magnetic field strength and the maximum Fermi energy of the system. We study the equations of state of these one-level, two-level, and three-level systems and compare them by taking three different maximum Fermi energies. We also find the effect of the strong magnetic field on the mass-radius relation of the underlying star composed of the gas stated above. We obtain an exciting result that it is possible to have an electron-degenerate static star, namely, magnetized white dwarfs, with a mass significantly greater than the Chandrasekhar limit in the range 2.3-2.6M(circle dot), provided it has an appropriate magnetic field strength and central density. In fact, recent observations of peculiar type Ia supernovae-SN 2006gz, SN 2007if, SN 2009dc, SN 2003fg-seem to suggest super-Chandrasekhar-mass white dwarfs with masses up to 2.4-2.8M(circle dot) as their most likely progenitors. Interestingly, our results seem to lie within these observational limits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Combustion instability events in lean premixed combustion systems can cause spatio-temporal variations in unburnt mixture fuel/air ratio. This provides a driving mechanism for heat-release oscillations when they interact with the flame. Several Reduced Order Modelling (ROM) approaches to predict the characteristics of these oscillations have been developed in the past. The present paper compares results for flame describing function characteristics determined from a ROM approach based on the level-set method, with corresponding results from detailed, fully compressible reacting flow computations for the same two dimensional slot flame configuration. The comparison between these results is seen to be sensitive to small geometric differences in the shape of the nominally steady flame used in the two computations. When the results are corrected to account for these differences, describing function magnitudes are well predicted for frequencies lesser than and greater than a lower and upper cutoff respectively due to amplification of flame surface wrinkling by the convective Darrieus-Landau (DL) instability. However, good agreement in describing function phase predictions is seen as the ROM captures the transit time of wrinkles through the flame correctly. Also, good agreement is seen for both magnitude and phase of the flame response, for large forcing amplitudes, at frequencies where the DL instability has a minimal influence. Thus, the present ROM can predict flame response as long as the DL instability, caused by gas expansion at the flame front, does not significantly alter flame front perturbation amplitudes as they traverse the flame. (C) 2012 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present an analytical effective theory for the magnetic phase diagram for zigzag-edge terminated honeycomb nanoribbons described by a Hubbard model with an interaction parameter U. We show that the edge magnetic moment varies as ln U and uncover its dependence on the width W of the ribbon. The physics of this owes its origin to the sensory-organ-like response of the nanoribbons, demonstrating that considerations beyond the usual Stoner-Landau theory are necessary to understand the magnetism of these systems. A first-order magnetic transition from an antiparallel orientation of the moments on opposite edges to a parallel orientation occurs upon doping with holes or electrons. The critical doping for this transition is shown to depend inversely on the width of the ribbon. Using variational Monte Carlo calculations, we show that magnetism is robust to fluctuations. Additionally, we show that the magnetic phase diagram is generic to zigzag-edge terminated nanostructures such as nanodots. Furthermore, we perform first-principles modeling to show how such magnetic transitions can be realized in substituted graphene nanoribbons. DOI: 10.1103/PhysRevB.87.085412