837 resultados para Entropy of a sampling design
Resumo:
In non-extensive statistical mechanics [14], it is a nonsense statement to say that the entropy of a system is extensive (or not), without mentioning a law of composition of its elements. In this theory quantum correlations might be perceived through quantum information process. This article, that is an extension of recent work [4], is a comparative study between the entropies of Von Neumann and of Tsallis, with some implementations of the effect of entropy in quantum entanglement, important as a process for transmission of quantum information. We consider two factorized (Fock number) states, which interact through a beam splitter bilinear Hamiltonian with two entries. This comparison showed us that the entropies of Tsallis and Von Neumann behave differently depending on the reflectance of the beam splitter. © 2011 Academic Publications.
Resumo:
Severely disabled children have little chance of environmental and social exploration and discovery. This lack of interaction and independency may lead to an idea that they are unable to do anything by themselves. In an attempt to help children in this situation, educational robotics can offer and aid, once it can provide them a certain degree of independency in the exploration of environment. The system developed in this work allows the child to transmit the commands to a robot through myoelectric and movement sensors. The sensors are placed on the child's body so they can obtain information from the body inclination and muscle contraction, thus allowing commanding, through a wireless communication, the mobile entertainment robot to carry out tasks such as play with objects and draw. In this paper, the details of the robot design and control architecture are presented and discussed. With this system, disabled children get a better cognitive development and social interaction, balancing in a certain way, the negative effects of their disabilities. © 2012 IEEE.
Resumo:
Spatial patterns in assemblage structures are generated by ecological processes that occur on multiple scales. Identifying these processes is important for the prediction of impact, for restoration and for conservation of biodiversity. This study used a hierarchical sampling design to quantify variations in assemblage structures of Brazilian estuarine fish across 2 spatial scales and to reveal the ecological processes underlying the patterns observed. Eight areas separated by 0.7 to 25 km (local scale) were sampled in 5 estuaries separated by 970 to 6000 km (regional scale) along the coast, encompassing both tropical and subtropical regions. The assemblage structure varied significantly in terms of relative biomass and presence/absence of species on both scales, but the regional variation was greater than the local variation for either dataset. However, the 5 estuaries sampled segregated into 2 major groups largely congruent with the Brazilian and Argentinian biogeographic provinces. Three environmental variables (mean temperature of the coldest month, mangrove area and mean annual precipitation) and distance between estuaries explained 44.8 and 16.3%, respectively, of the regional-scale variability in the species relative biomass. At the local scale, the importance of environmental predictors for the spatial structure of the assemblages differed between estuarine systems. Overall, these results support the idea that on a regional scale, the composition of fish assemblages is simultaneously determined by environmental filters and species dispersal capacity, while on a local scale, the effect of environmental factors should vary depending on estuary-specific physical and hydrological characteristics © 2013 Inter-Research.
Resumo:
The aim of this study was to assess the validity and reliability of the Fonseca Anamnestic Index (IAF), used to assess the severity of temporomandibular disorders, applied to Brazilian women. We used a probabilistic sampling design. The participants were 700 women over 18 years of age, living in the city of Araraquara (SP). The IAF questionnaire was applied by telephone interviews. We conducted Confirmatory Factor Analysis (CFA) using Chi-Square Over Degrees of Freedom (χ2/df), Comparative Fit Index (CFI), Tucker-Lewis Index (TLI), and Root Mean Square Error of Approximation (RMSEA) as goodness of fit indices. We calculated the convergent validity, the average variance extracted (AVE) and the composite reliability (CR). Internal consistency was assessed by Cronbach's alpha coefficient (α).The factorial weights of questions 8 and 10 were below the adequate values. Thus, we refined the original model and these questions were excluded. The resulting factorial model showed appropriate goodness of fit to the sample (χ2/df = 3.319, CFI = 0.978, TLI = 0.967, RMSEA = 0.058). The convergent validity (AVE = 0.513, CR = 0.878) and internal consistency (α = 0.745) were adequate. The reduced IAF version showed adequate validity and reliability in a sample of Brazilian women.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Research has shown that applying the T-2 control chart by using a variable parameters (VP) scheme yields rapid detection of out-of-control states. In this paper, the problem of economic statistical design of the VP T-2 control chart is considered as a double-objective minimization problem with the statistical objective being the adjusted average time to signal and the economic objective being expected cost per hour. We then find the Pareto-optimal designs in which the two objectives are met simultaneously by using a multi-objective genetic algorithm. Through an illustrative example, we show that relatively large benefits can be achieved by applying the VP scheme when compared with usual schemes, and in addition, the multi-objective approach provides the user with designs that are flexible and adaptive.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Analyses of ecological data should account for the uncertainty in the process(es) that generated the data. However, accounting for these uncertainties is a difficult task, since ecology is known for its complexity. Measurement and/or process errors are often the only sources of uncertainty modeled when addressing complex ecological problems, yet analyses should also account for uncertainty in sampling design, in model specification, in parameters governing the specified model, and in initial and boundary conditions. Only then can we be confident in the scientific inferences and forecasts made from an analysis. Probability and statistics provide a framework that accounts for multiple sources of uncertainty. Given the complexities of ecological studies, the hierarchical statistical model is an invaluable tool. This approach is not new in ecology, and there are many examples (both Bayesian and non-Bayesian) in the literature illustrating the benefits of this approach. In this article, we provide a baseline for concepts, notation, and methods, from which discussion on hierarchical statistical modeling in ecology can proceed. We have also planted some seeds for discussion and tried to show where the practical difficulties lie. Our thesis is that hierarchical statistical modeling is a powerful way of approaching ecological analysis in the presence of inevitable but quantifiable uncertainties, even if practical issues sometimes require pragmatic compromises.
Resumo:
Robots are needed to perform important field tasks such as hazardous material clean-up, nuclear site inspection, and space exploration. Unfortunately their use is not widespread due to their long development times and high costs. To make them practical, a modular design approach is proposed. Prefabricated modules are rapidly assembled to give a low-cost system for a specific task. This paper described the modular design problem for field robots and the application of a hierarchical selection process to solve this problem. Theoretical analysis and an example case study are presented. The theoretical analysis of the modular design problem revealed the large size of the search space. It showed the advantages of approaching the design on various levels. The hierarchical selection process applies physical rules to reduce the search space to a computationally feasible size and a genetic algorithm performs the final search in a greatly reduced space. This process is based on the observation that simple physically based rules can eliminate large sections of the design space to greatly simplify the search. The design process is applied to a duct inspection task. Five candidate robots were developed. Two of these robots are evaluated using detailed physical simulation. It is shown that the more obvious solution is not able to complete the task, while the non-obvious asymmetric design develop by the process is successful.
Resumo:
Temporal and spatial fluctuations of environmental parameters are normally assigned as causes of variations in morpho-phenological characters of seaweeds and in their epibionts, but formal tests of such hypotheses are lacking, especially in narrow gradients. The present study evaluated the influence of a very small depth gradient (1 to 3 m) and of subtle seasonality characteristic of tropical areas on morpho-phenological traits and on the occurrence of sessile epiphytic organisms using a controlled orthogonal sampling design in a sublittoral population of the tropical brown alga Sargassum cymosum. Four temporal samples were obtained over a one-year period at three depths using nine replicates. The wet weight, maximum length, number of primary and secondary branches, and proportion of secondary branches with receptacles were recorded. Epibiosis was estimated by visual evaluation of percentage cover on secondary branches. Algal morphology varied as a function of the period of the year (weaker effect) and depth (stronger effect) but in different ways for each variable analysed. In general, fronds tended to be shorter, heavier, and more ramified in shallower areas. In relation to time, the morphological characters tended mostly to present higher values in January (summer) and/or April (autumn). Frequency of receptacles did not depend on algal morphology and depth at all but varied in time, although only in the deepest area. Epibiosis also did not depend on algal morphology but varied in relation to time (stronger effect) and, to a lesser extent, depth (weaker effect). The effect of time upon epibiosis also depended on the biological group analysed. These data support the hypothesis that algal morphology varies in relation to period of the year and depth, even under small temporal and spatial environmenal gradients.
Resumo:
Contamination by butyltin compounds (BTs) has been reported in estuarine environments worldwide, with serious impacts on the biota of these areas. Considering that BTs can be degraded by varying environmental conditions such as incident light and salinity, the short-term variations in such factors may lead to inaccurate estimates of BTs concentrations in nature. Therefore, the present study aimed to evaluate the possibility that measurements of BTs in estuarine sediments are influenced by different sampling conditions, including period of the day (day or night), tidal zone (intertidal or subtidal), and tides (high or low). The study area is located on the Brazilian southeastern coast, Sao Vicente Estuary, at Pescadores Beach, where BT contamination was previously detected. Three replicate samples of surface sediment were collected randomly in each combination of period of the day, tidal zone, and tide condition, from three subareas along the beach, totaling 72 samples. BTs were analyzed by GC-PFPD using a tin filter and a VF-5 column, by means of a validated method. The concentrations of tributyltin (TBT), dibutyltin (DBT), and monobutyltin (MBT) ranged from undetectable to 161 ng Sn g(-1) (d.w.). In most samples (71%), only MBT was quantifiable, whereas TBTs were measured in only 14, suggesting either an old contamination or rapid degradation processes. DBT was found in 27 samples, but could be quantified in only one. MBT concentrations did not differ significantly with time of day, zones, or tide conditions. DBT and TBT could not be compared under all these environmental conditions, because only a few samples were above the quantification limit. Pooled samples of TBT did not reveal any difference between day and night. These results indicated that, in assessing contamination by butyltin compounds, surface-sediment samples can be collected in any environmental conditions. However, the wide variation of BTs concentrations in the study area, i.e., over a very small geographic scale, illustrates the need for representative hierarchical and composite sampling designs that are compatible with the multiscalar temporal and spatial variability common to most marine systems. The use of such sampling designs will be necessary for future attempts to quantitatively evaluate and monitor the occurrence and impact of these compounds in nature
Resumo:
OBJECTIVE: To characterize the elderly with physical limitations; to assess functional capacity as it relates to physical mobility, cognitive status and level of functional independence in activities of daily living, and to relate functional capacity to the risk for pressure ulcers. METHODS: A quantitative cross-sectional approach, conducted in households in the city of João Pessoa (PB) with seniors who presented physical limitation. Fifty-one elderly were investigated in a two-stage cluster sampling design. RESULTS: There was evidence of impairments in functional capacity of the elderly aged 80 years or more, with more severe physical limitations, cognitive impairment and a higher level of dependency for activities. Significant differences were observed between the level of functional independence in performing activities of daily living and the risk of pressure ulcers. CONCLUSION: This study allowed for the identification of the elderly in functional decline and at risk for developing pressure ulcers, supporting the implementation of preventive actions at the household level.
Resumo:
Background. The surgical treatment of dysfunctional hips is a severe condition for the patient and a costly therapy for the public health. Hip resurfacing techniques seem to hold the promise of various advantages over traditional THR, with particular attention to young and active patients. Although the lesson provided in the past by many branches of engineering is that success in designing competitive products can be achieved only by predicting the possible scenario of failure, to date the understanding of the implant quality is poorly pre-clinically addressed. Thus revision is the only delayed and reliable end point for assessment. The aim of the present work was to model the musculoskeletal system so as to develop a protocol for predicting failure of hip resurfacing prosthesis. Methods. Preliminary studies validated the technique for the generation of subject specific finite element (FE) models of long bones from Computed Thomography data. The proposed protocol consisted in the numerical analysis of the prosthesis biomechanics by deterministic and statistic studies so as to assess the risk of biomechanical failure on the different operative conditions the implant might face in a population of interest during various activities of daily living. Physiological conditions were defined including the variability of the anatomy, bone densitometry, surgery uncertainties and published boundary conditions at the hip. The protocol was tested by analysing a successful design on the market and a new prototype of a resurfacing prosthesis. Results. The intrinsic accuracy of models on bone stress predictions (RMSE < 10%) was aligned to the current state of the art in this field. The accuracy of prediction on the bone-prosthesis contact mechanics was also excellent (< 0.001 mm). The sensitivity of models prediction to uncertainties on modelling parameter was found below 8.4%. The analysis of the successful design resulted in a very good agreement with published retrospective studies. The geometry optimisation of the new prototype lead to a final design with a low risk of failure. The statistical analysis confirmed the minimal risk of the optimised design over the entire population of interest. The performances of the optimised design showed a significant improvement with respect to the first prototype (+35%). Limitations. On the authors opinion the major limitation of this study is on boundary conditions. The muscular forces and the hip joint reaction were derived from the few data available in the literature, which can be considered significant but hardly representative of the entire variability of boundary conditions the implant might face over the patients population. This moved the focus of the research on modelling the musculoskeletal system; the ongoing activity is to develop subject-specific musculoskeletal models of the lower limb from medical images. Conclusions. The developed protocol was able to accurately predict known clinical outcomes when applied to a well-established device and, to support the design optimisation phase providing important information on critical characteristics of the patients when applied to a new prosthesis. The presented approach does have a relevant generality that would allow the extension of the protocol to a large set of orthopaedic scenarios with minor changes. Hence, a failure mode analysis criterion can be considered a suitable tool in developing new orthopaedic devices.
Resumo:
Proper ion channels’ functioning is a prerequisite for a normal cell and disorders involving ion channels, or channelopathies, underlie many human diseases. Long QT syndromes (LQTS) for example may arise from the malfunctioning of hERG channel, caused either by the binding of drugs or mutations in HERG gene. In the first part of this thesis I present a framework to investigate the mechanism of ion conduction through hERG channel. The free energy profile governing the elementary steps of ion translocation in the pore was computed by means of umbrella sampling simulations. Compared to previous studies, we detected a different dynamic behavior: according to our data hERG is more likely to mediate a conduction mechanism which has been referred to as “single-vacancy-like” by Roux and coworkers (2001), rather then a “knock-on” mechanism. The same protocol was applied to a model of hERG presenting the Gly628Ser mutation, found to be cause of congenital LQTS. The results provided interesting insights about the reason of the malfunctioning of the mutant channel. Since they have critical functions in viruses’ life cycle, viral ion channels, such as M2 proton channel, are considered attractive targets for antiviral therapy. A deep knowledge of the mechanisms that the virus employs to survive in the host cell is of primary importance in the identification of new antiviral strategies. In the second part of this thesis I shed light on the role that M2 plays in the control of electrical potential inside the virus, being the charge equilibration a condition required to allow proton influx. The ion conduction through M2 was simulated using metadynamics technique. Based on our results we suggest that a potential anion-mediated cation-proton exchange, as well as a direct anion-proton exchange could both contribute to explain the activity of the M2 channel.