970 resultados para Embedded boundary method
Resumo:
The present dissertation is concerned with the determination of the magnetic field distribution in ma[.rnetic electron lenses by means of the finite element method. In the differential form of this method a Poisson type equation is solved by numerical methods over a finite boundary. Previous methods of adapting this procedure to the requirements of digital computers have restricted its use to computers of extremely large core size. It is shown that by reformulating the boundary conditions, a considerable reduction in core store can be achieved for a given accuracy of field distribution. The magnetic field distribution of a lens may also be calculated by the integral form of the finite element rnethod. This eliminates boundary problems mentioned but introduces other difficulties. After a careful analysis of both methods it has proved possible to combine the advantages of both in a .new approach to the problem which may be called the 'differential-integral' finite element method. The application of this method to the determination of the magnetic field distribution of some new types of magnetic lenses is described. In the course of the work considerable re-programming of standard programs was necessary in order to reduce the core store requirements to a minimum.
Resumo:
'I'he accurate rreasurement of bed shear stress has been extremely difficult due to its changing values until white propunded a theory which would give constant shear along the bed of a flume. In this investigation a flume has been designed according to White's theory and by two separate methods proven to give constant shearing force along the bed. The first method applied the Hydrogen Bubble Technique to obtain accurate values of velocity thus allowing the velocity profile to be plotted and the momentum at the various test sections to be calculated. The use of a 16 mm Beaulieu movie camera allowed the exact velocity profiles created by the hydrogen bubbles to be recorded whilst an analysing projector gave the means of calculating the exact velocities at the various test sections. Simultaneously Preston's technique of measuring skin friction using Pitot tubes was applied. Twc banks of open ended water manometer were used for recording the static and velocity head pressure drop along the flume. This tvpe of manometer eliminated air locks in the tubes and was found to be sufficiently accurate. Readings of pressure and velocity were taken for various types and diameters of bed material both natural sands and glass spheres and the results tabulated. Graphs of particle Reynolds Number against bed shear stress were plotted and gave a linear relationship which dropped off at high values of Reynolds number. It was found that bed movement occurred instantaneously along the bed of the flume once critical velocity had been reached. On completion of this test a roof curve inappropriate to the bed material was used and then the test repeated. The bed shearing stress was now no longer constant and yet bed movement started instantaneously along the bed of the flume, showing that there are more parameters than critical shear stress to bed movement. It is concluded from the two separate methods applied that the bed shear stress is constant along the bed of the flume.
Resumo:
This paper explores a new method of analysing muscle fatigue within the muscles predominantly used during microsurgery. The captured electromyographic (EMG) data retrieved from these muscles are analysed for any defining patterns relating to muscle fatigue. The analysis consists of dynamically embedding the EMG signals from a single muscle channel into an embedded matrix. The muscle fatigue is determined by defining its entropy characterized by the singular values of the dynamically embedded (DE) matrix. The paper compares this new method with the traditional method of using mean frequency shifts in the EMG signal's power spectral density. Linear regressions are fitted to the results from both methods, and the coefficients of variation of both their slope and point of intercept are determined. It is shown that the complexity method is slightly more robust in that the coefficient of variation for the DE method has lower variability than the conventional method of mean frequency analysis.
Resumo:
In this paper we investigate an application of the method of fundamental solutions (MFS) to transient heat conduction. In almost all of the previously proposed MFS for time-dependent heat conduction the fictitious sources are located outside the time-interval of interest. In our case, however, these sources are instead placed outside the space domain of interest in the same manner as is done for stationary heat conduction. A denseness result for this method is discussed and the method is numerically tested showing that accurate numerical results can be obtained. Furthermore, a test example with boundary singularities shows that it is advisable to remove such singularities before applying the MFS.
Resumo:
We investigate an application of the method of fundamental solutions (MFS) to the one-dimensional parabolic inverse Cauchy–Stefan problem, where boundary data and the initial condition are to be determined from the Cauchy data prescribed on a given moving interface. In [B.T. Johansson, D. Lesnic, and T. Reeve, A method of fundamental solutions for the one-dimensional inverse Stefan Problem, Appl. Math Model. 35 (2011), pp. 4367–4378], the inverse Stefan problem was considered, where only the boundary data is to be reconstructed on the fixed boundary. We extend the MFS proposed in Johansson et al. (2011) and show that the initial condition can also be simultaneously recovered, i.e. the MFS is appropriate for the inverse Cauchy-Stefan problem. Theoretical properties of the method, as well as numerical investigations, are included, showing that accurate results can be efficiently obtained with small computational cost.
Resumo:
A Cauchy problem for general elliptic second-order linear partial differential equations in which the Dirichlet data in H½(?1 ? ?3) is assumed available on a larger part of the boundary ? of the bounded domain O than the boundary portion ?1 on which the Neumann data is prescribed, is investigated using a conjugate gradient method. We obtain an approximation to the solution of the Cauchy problem by minimizing a certain discrete functional and interpolating using the finite diference or boundary element method. The minimization involves solving equations obtained by discretising mixed boundary value problems for the same operator and its adjoint. It is proved that the solution of the discretised optimization problem converges to the continuous one, as the mesh size tends to zero. Numerical results are presented and discussed.
Resumo:
We propose two algorithms involving the relaxation of either the given Dirichlet data (boundary displacements) or the prescribed Neumann data (boundary tractions) on the over-specified boundary in the case of the alternating iterative algorithm of Kozlov et al. [16] applied to Cauchy problems in linear elasticity. A convergence proof of these relaxation methods is given, along with a stopping criterion. The numerical results obtained using these procedures, in conjunction with the boundary element method (BEM), show the numerical stability, convergence, consistency and computational efficiency of the proposed method.
Resumo:
In this paper we investigate an application of the method of fundamental solutions (MFS) to transient heat conduction in layered materials, where the thermal diffusivity is piecewise constant. Recently, in Johansson and Lesnic [A method of fundamental solutions for transient heat conduction. Eng Anal Boundary Elem 2008;32:697–703], a MFS was proposed with the sources placed outside the space domain of interest, and we extend that technique to numerically approximate the heat flow in layered materials. Theoretical properties of the method, as well as numerical investigations are included.
Resumo:
In this paper, free surface problems of Stefan-type for the parabolic heat equation are investigated using the method of fundamental solutions. The additional measurement necessary to determine the free surface could be a boundary temperature, a heat flux or an energy measurement. Both one- and two-phase flows are investigated. Numerical results are presented and discussed.
Resumo:
Purpose – To propose and investigate a stable numerical procedure for the reconstruction of the velocity of a viscous incompressible fluid flow in linear hydrodynamics from knowledge of the velocity and fluid stress force given on a part of the boundary of a bounded domain. Design/methodology/approach – Earlier works have involved the similar problem but for stationary case (time-independent fluid flow). Extending these ideas a procedure is proposed and investigated also for the time-dependent case. Findings – The paper finds a novel variation method for the Cauchy problem. It proves convergence and also proposes a new boundary element method. Research limitations/implications – The fluid flow domain is limited to annular domains; this restriction can be removed undertaking analyses in appropriate weighted spaces to incorporate singularities that can occur on general bounded domains. Future work involves numerical investigations and also to consider Oseen type flow. A challenging problem is to consider non-linear Navier-Stokes equation. Practical implications – Fluid flow problems where data are known only on a part of the boundary occur in a range of engineering situations such as colloidal suspension and swimming of microorganisms. For example, the solution domain can be the region between to spheres where only the outer sphere is accessible for measurements. Originality/value – A novel variational method for the Cauchy problem is proposed which preserves the unsteady Stokes operator, convergence is proved and using recent for the fundamental solution for unsteady Stokes system, a new boundary element method for this system is also proposed.
Resumo:
In this paper, three iterative procedures (Landweber-Fridman, conjugate gradient and minimal error methods) for obtaining a stable solution to the Cauchy problem in slow viscous flows are presented and compared. A section is devoted to the numerical investigations of these algorithms. There, we use the boundary element method together with efficient stopping criteria for ceasing the iteration process in order to obtain stable solutions.
Resumo:
The inverse problem of determining a spacewise-dependent heat source for the parabolic heat equation using the usual conditions of the direct problem and information from one supplementary temperature measurement at a given instant of time is studied. This spacewise-dependent temperature measurement ensures that this inverse problem has a unique solution, but the solution is unstable and hence the problem is ill-posed. We propose a variational conjugate gradient-type iterative algorithm for the stable reconstruction of the heat source based on a sequence of well-posed direct problems for the parabolic heat equation which are solved at each iteration step using the boundary element method. The instability is overcome by stopping the iterative procedure at the first iteration for which the discrepancy principle is satisfied. Numerical results are presented which have the input measured data perturbed by increasing amounts of random noise. The numerical results show that the proposed procedure yields stable and accurate numerical approximations after only a few iterations.
Resumo:
In this article, an iterative algorithm based on the Landweber-Fridman method in combination with the boundary element method is developed for solving a Cauchy problem in linear hydrostatics Stokes flow of a slow viscous fluid. This is an iteration scheme where mixed well-posed problems for the stationary generalized Stokes system and its adjoint are solved in an alternating way. A convergence proof of this procedure is included and an efficient stopping criterion is employed. The numerical results confirm that the iterative method produces a convergent and stable numerical solution. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2007
Resumo:
An iterative procedure for determining temperature fields from Cauchy data given on a part of the boundary is presented. At each iteration step, a series of mixed well-posed boundary value problems are solved for the heat operator and its adjoint. A convergence proof of this method in a weighted L2-space is included, as well as a stopping criteria for the case of noisy data. Moreover, a solvability result in a weighted Sobolev space for a parabolic initial boundary value problem of second order with mixed boundary conditions is presented. Regularity of the solution is proved. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
Resumo:
The problem considered is that of determining the fluid velocity for linear hydrostatics Stokes flow of slow viscous fluids from measured velocity and fluid stress force on a part of the boundary of a bounded domain. A variational conjugate gradient iterative procedure is proposed based on solving a series of mixed well-posed boundary value problems for the Stokes operator and its adjoint. In order to stabilize the Cauchy problem, the iterations are ceased according to an optimal order discrepancy principle stopping criterion. Numerical results obtained using the boundary element method confirm that the procedure produces a convergent and stable numerical solution.