362 resultados para Electromyographic


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Kinesio Taping (KT) has been used in healthy people to improve neuromuscular performance, however, few studies have evaluated its chronic effects, despite being suggested. Objective: To analyze the chronic effects of KT on neuromuscular performance of the quadriceps, the oscillation of the center of pressure and lower limb function in healthy women. Methods: blinded, randomized, controlled trial, composed of 60 women (mean age 21.9 ± 3.3 years and BMI 22.3 ± 2.2 kg / m2) submitted to the evaluation of oscillation of the center of pressure through the baropodometry, the lower limb function by the hop test, isokinetic knee performance, the electromyographic activity of the vastus lateralis (VL) and joint position sense of the knee (JPS). Then, participants were randomly divided into three groups of twenty: control - did not apply the KT; placebo - application of KT without tension on the quadriceps; Kinesio Taping - application of KT with tension in the same muscle group. The evaluations were conducted in five moments: prior to application of KT, immediately after the application, 24h, 48h after application and 24 hours after its removal (72h). SPSS 20.0 was used for statistical analysis. The KS test was used to verify the data normality, the Levene test for homogeneity of variances and a mixed-model ANOVA 3x5 to check intra and inter-group differences. Results: there was no difference in peak torque, the power, nor the electromyographic activity or SPA (p> 0.05) between groups. The displacement speed of center of pressure reduced immediately after the application on kinesio taping group (p <0.001), but with no differences between the groups (p = 0.28). There was a reduction in the time of peak torque among the three groups in the evaluations after KT application (p <0.001) and an increase in single hop in all groups (p <0.001), but with no differences between them. Conclusion: KT can not change, in a chronic way, the lower limb function, the oscillation of the center of pressure, the isokinetic performance, the JPS of the knee and the electromyographic activity of VL muscle in healthy women.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: analyze the effect of Kinesio Taping (KT) on the indirect clinical markers of muscle damage induced by eccentric exercises in the elbow flexors in healthy individuals. Materials and methods: It is a randomized controlled trial involving sixty volunteers at age group between 18 and 28 years randomly selected. The sample into three groups with twenty participants: control group (CG) – eccentric protocol without KT, KT group – eccentric with tensioned KT, placebo group – eccentric protocol KT with no tension. The evaluations took place at four moments; the first one was the basis line (AV1), after the second protocol (AV2) and the following two groups 24 (AV3) and 48 hours (AV4) after the intervention protocol. The muscle damage was induced by sixteen maximum eccentric contractions of the elbow flexors from the non-dominant limb, divided in two sets of eight repetitions, at 60º/s, with two minutes interval. The variables analyzed were: the joint amplitude in rest, the level of pain, the joint position sense (JPS) followed of isokinetic checking with electromyographic sign capitation. These data were analyzed in software SPSS 20.0. The normality was identified by Kolmogorov-Smimov examination and then, being used the ANOVA mixed model with significance of 5%. Outcomes: a decrease was observed at joint amplitude moreover, an immediate increase of pain wich increased after 24 and remained until 48 hours at all groups searched. There was not difference at the JPS. The variables peak torque, average peak torque, total work and mean power mean reduced until 48 hours after muscle lesion in all groups. Among the groups, there was no difference in EMG values and for any of the variables. Conclusion: The KT did not influence at the indirect clinical markers of muscle lesion induced by eccentric exercises in the elbow flexors in healthy people.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: analyze the effect of Kinesio Taping (KT) on the indirect clinical markers of muscle damage induced by eccentric exercises in the elbow flexors in healthy individuals. Materials and methods: It is a randomized controlled trial involving sixty volunteers at age group between 18 and 28 years randomly selected. The sample into three groups with twenty participants: control group (CG) – eccentric protocol without KT, KT group – eccentric with tensioned KT, placebo group – eccentric protocol KT with no tension. The evaluations took place at four moments; the first one was the basis line (AV1), after the second protocol (AV2) and the following two groups 24 (AV3) and 48 hours (AV4) after the intervention protocol. The muscle damage was induced by sixteen maximum eccentric contractions of the elbow flexors from the non-dominant limb, divided in two sets of eight repetitions, at 60º/s, with two minutes interval. The variables analyzed were: the joint amplitude in rest, the level of pain, the joint position sense (JPS) followed of isokinetic checking with electromyographic sign capitation. These data were analyzed in software SPSS 20.0. The normality was identified by Kolmogorov-Smimov examination and then, being used the ANOVA mixed model with significance of 5%. Outcomes: a decrease was observed at joint amplitude moreover, an immediate increase of pain wich increased after 24 and remained until 48 hours at all groups searched. There was not difference at the JPS. The variables peak torque, average peak torque, total work and mean power mean reduced until 48 hours after muscle lesion in all groups. Among the groups, there was no difference in EMG values and for any of the variables. Conclusion: The KT did not influence at the indirect clinical markers of muscle lesion induced by eccentric exercises in the elbow flexors in healthy people.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Skeletal muscle consists of muscle fiber types that have different physiological and biochemical characteristics. Basically, the muscle fiber can be classified into type I and type II, presenting, among other features, contraction speed and sensitivity to fatigue different for each type of muscle fiber. These fibers coexist in the skeletal muscles and their relative proportions are modulated according to the muscle functionality and the stimulus that is submitted. To identify the different proportions of fiber types in the muscle composition, many studies use biopsy as standard procedure. As the surface electromyography (EMGs) allows to extract information about the recruitment of different motor units, this study is based on the assumption that it is possible to use the EMG to identify different proportions of fiber types in a muscle. The goal of this study was to identify the characteristics of the EMG signals which are able to distinguish, more precisely, different proportions of fiber types. Also was investigated the combination of characteristics using appropriate mathematical models. To achieve the proposed objective, simulated signals were developed with different proportions of motor units recruited and with different signal-to-noise ratios. Thirteen characteristics in function of time and the frequency were extracted from emulated signals. The results for each extracted feature of the signals were submitted to the clustering algorithm k-means to separate the different proportions of motor units recruited on the emulated signals. Mathematical techniques (confusion matrix and analysis of capability) were implemented to select the characteristics able to identify different proportions of muscle fiber types. As a result, the average frequency and median frequency were selected as able to distinguish, with more precision, the proportions of different muscle fiber types. Posteriorly, the features considered most able were analyzed in an associated way through principal component analysis. Were found two principal components of the signals emulated without noise (CP1 and CP2) and two principal components of the noisy signals (CP1 and CP2 ). The first principal components (CP1 and CP1 ) were identified as being able to distinguish different proportions of muscle fiber types. The selected characteristics (median frequency, mean frequency, CP1 and CP1 ) were used to analyze real EMGs signals, comparing sedentary people with physically active people who practice strength training (weight training). The results obtained with the different groups of volunteers show that the physically active people obtained higher values of mean frequency, median frequency and principal components compared with the sedentary people. Moreover, these values decreased with increasing power level for both groups, however, the decline was more accented for the group of physically active people. Based on these results, it is assumed that the volunteers of the physically active group have higher proportions of type II fibers than sedentary people. Finally, based on these results, we can conclude that the selected characteristics were able to distinguish different proportions of muscle fiber types, both for the emulated signals as to the real signals. These characteristics can be used in several studies, for example, to evaluate the progress of people with myopathy and neuromyopathy due to the physiotherapy, and also to analyze the development of athletes to improve their muscle capacity according to their sport. In both cases, the extraction of these characteristics from the surface electromyography signals provides a feedback to the physiotherapist and the coach physical, who can analyze the increase in the proportion of a given type of fiber, as desired in each case.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A number of studies in the areas of Biomedical Engineering and Health Sciences have employed machine learning tools to develop methods capable of identifying patterns in different sets of data. Despite its extinction in many countries of the developed world, Hansen’s disease is still a disease that affects a huge part of the population in countries such as India and Brazil. In this context, this research proposes to develop a method that makes it possible to understand in the future how Hansen’s disease affects facial muscles. By using surface electromyography, a system was adapted so as to capture the signals from the largest possible number of facial muscles. We have first looked upon the literature to learn about the way researchers around the globe have been working with diseases that affect the peripheral neural system and how electromyography has acted to contribute to the understanding of these diseases. From these data, a protocol was proposed to collect facial surface electromyographic (sEMG) signals so that these signals presented a high signal to noise ratio. After collecting the signals, we looked for a method that would enable the visualization of this information in a way to make it possible to guarantee that the method used presented satisfactory results. After identifying the method's efficiency, we tried to understand which information could be extracted from the electromyographic signal representing the collected data. Once studies demonstrating which information could contribute to a better understanding of this pathology were not to be found in literature, parameters of amplitude, frequency and entropy were extracted from the signal and a feature selection was made in order to look for the features that better distinguish a healthy individual from a pathological one. After, we tried to identify the classifier that best discriminates distinct individuals from different groups, and also the set of parameters of this classifier that would bring the best outcome. It was identified that the protocol proposed in this study and the adaptation with disposable electrodes available in market proved their effectiveness and capability of being used in different studies whose intention is to collect data from facial electromyography. The feature selection algorithm also showed that not all of the features extracted from the signal are significant for data classification, with some more relevant than others. The classifier Support Vector Machine (SVM) proved itself efficient when the adequate Kernel function was used with the muscle from which information was to be extracted. Each investigated muscle presented different results when the classifier used linear, radial and polynomial kernel functions. Even though we have focused on Hansen’s disease, the method applied here can be used to study facial electromyography in other pathologies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A number of studies in the areas of Biomedical Engineering and Health Sciences have employed machine learning tools to develop methods capable of identifying patterns in different sets of data. Despite its extinction in many countries of the developed world, Hansen’s disease is still a disease that affects a huge part of the population in countries such as India and Brazil. In this context, this research proposes to develop a method that makes it possible to understand in the future how Hansen’s disease affects facial muscles. By using surface electromyography, a system was adapted so as to capture the signals from the largest possible number of facial muscles. We have first looked upon the literature to learn about the way researchers around the globe have been working with diseases that affect the peripheral neural system and how electromyography has acted to contribute to the understanding of these diseases. From these data, a protocol was proposed to collect facial surface electromyographic (sEMG) signals so that these signals presented a high signal to noise ratio. After collecting the signals, we looked for a method that would enable the visualization of this information in a way to make it possible to guarantee that the method used presented satisfactory results. After identifying the method's efficiency, we tried to understand which information could be extracted from the electromyographic signal representing the collected data. Once studies demonstrating which information could contribute to a better understanding of this pathology were not to be found in literature, parameters of amplitude, frequency and entropy were extracted from the signal and a feature selection was made in order to look for the features that better distinguish a healthy individual from a pathological one. After, we tried to identify the classifier that best discriminates distinct individuals from different groups, and also the set of parameters of this classifier that would bring the best outcome. It was identified that the protocol proposed in this study and the adaptation with disposable electrodes available in market proved their effectiveness and capability of being used in different studies whose intention is to collect data from facial electromyography. The feature selection algorithm also showed that not all of the features extracted from the signal are significant for data classification, with some more relevant than others. The classifier Support Vector Machine (SVM) proved itself efficient when the adequate Kernel function was used with the muscle from which information was to be extracted. Each investigated muscle presented different results when the classifier used linear, radial and polynomial kernel functions. Even though we have focused on Hansen’s disease, the method applied here can be used to study facial electromyography in other pathologies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Loss of limb results in loss of function and a partial loss of freedom. A powered prosthetic device can partially assist an individual with everyday tasks and therefore return some level of independence. Powered upper limb prostheses are often controlled by the user generating surface electromyographic (SEMG) signals. The goal of this thesis is to develop a virtual environment in which a user can control a virtual hand to safely grasp representations of everyday objects using EMG signals from his/her forearm muscles, and experience visual and vibrotactile feedback relevant to the grasping force in the process. This can then be used to train potential wearers of real EMG controlled prostheses, with or without vibrotactile feedback. To test this system an experiment was designed and executed involving ten subjects, twelve objects, and three feedback conditions. The tested feedback conditions were visual, vibrotactile, and both visual and vibrotactile. In each experimental exercise the subject attempted to grasp a virtual object on the screen using the virtual hand controlled by EMG electrodes placed on his/her forearm. Two metrics were used: score, and time to task completion, where score measured grasp dexterity. It was hypothesized that with the introduction of vibrotactile feedback, dexterity, and therefore score, would improve and time to task completion would decrease. Results showed that time to task completion increased, and score did not improve with vibrotactile feedback. Details on the developed system, the experiment, and the results are presented in this thesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DSCAM est exprimé dans le cortex lors du développement et sa mutation altère l’arborisation dendritique des neurones pyramidaux du cortex moteur. Considérant que les souris DSCAM2J possèdent des problèmes posturaux et locomoteurs, nous émettons l’hypothèse que DSCAM est impliqué dans le fonctionnement normal du cortex moteur et de la voie corticospinale. Comparées aux souris contrôles, les souris DSCAM2J vont présenter des problèmes moteurs à basse vitesse et enjamber un obstacle presque normalement à vitesse intermédiaire. Le traçage antérograde de la voie corticospinale révèle un patron d’innervation normal dans le tronc cérébrale et la moelle épinière. Des microstimulations intracorticale du cortex moteur évoque des réponses électromyographiques dans les membres à un seuil et une latence plus élevé. Par contre, une stimulation de la voie corticospinale dans la médulla évoque des réponses électromyographies à un seuil et une latence similaire entre les deux groupes, suggérant une réduction de l’excitabilité du cortex moteur.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ankle sprains are the most common injuries in sports, usually causing damage to the lateral ligaments. Recurrence has as usual result permanent instability, and thus loss of proprioception. This fact, together with residual symptoms, is what is known as chronic ankle instability, CAI, or FAI, if it is functional. This problem tries to be solved by improving musculoskeletal stability and proprioception by the application of bandages and performing exercises. The aim of this study has been to review articles (meta-analisis, systematic reviews and revisions) published in 2009-2015 in PubMed, Medline, ENFISPO and BUCea, using keywords such as “sprain instability”, “sprain proprioception”, “chronic ankle instability”. Evidence affirms that there does exist decreased proprioception in patients who suffer from CAI. Rehabilitation exercise regimen is indicated as a treatment because it generates a subjective improvement reported by the patient, and the application of bandages works like a sprain prevention method limiting the range of motion, reducing joint instability and increasing confidence during exercise. As podiatrists we should recommend proprioception exercises to all athletes in a preventive way, and those with CAI or FAI, as a rehabilitation programme, together with the application of bandages. However, further studies should be generated focusing on ways of improving proprioception, and on the exercise patterns that provide the maximum benefit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study investigated the effects of exercise-induced elbow flexor fatigue on voluntary force output, electromyographic (EMG) activity and motoneurone excitability of the nonexercised knee extensor muscles. Eleven participants attended 3 testing sessions: (i) control, (ii) unilateral fatiguing elbow flexion and (iii) bilateral fatiguing elbow flexion (BiFlex). The nonfatigued knee extensor muscles were assessed with thoracic motor evoked potentials (TMEPs), maximal compound muscle action potential (Mmax), knee extensor maximal voluntary contractions (MVCs), and normalized EMG activity before and at 30 s, 3 min, and 5 min postexercise. BiFlex showed significantly lower (Δ = -18%, p = 0.03) vastus lateralis (VL) normalized EMG activity compared with the control session whereas knee extension MVC force did not show any statistical difference between the 3 conditions (p = 0.12). The TMEP·Mmax-1 ratio measured at the VL showed a significantly higher value (Δ = +46%, p = 0.003) following BiFlex compared with the control condition at 30 s postexercise. The results suggest that the lower VL normalized EMG following BiFlex might have been due to a reduction in supraspinal motor output because spinal motoneuronal responses demonstrated substantially higher value (30 s postexercise) and peripheral excitability (compound muscle action potential) showed no change following BiFelex than control condition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this study was to investigate the effect of 6 atmospheres of pressure (ATA) on plantar flexors' (PF) voluntary force and activation, force-frequency characteristics, and rate of torque development (RTD). Eight subjects performed PF isometric contractions. Muscle activation was monitored by electromyographic (EMG) activity (PF and dorsiflexors) and the interpolated twitch technique (ITT). Maximal evoked contractions of the PF were elicited at 1, 2, 3, 5, 10, 20, and 40 Hz. PF RTD was calculated with maximal voluntary, 1 and 40 Hz contractions. Hyperbaric pressures significantly decreased PF voluntary torque; 6.2%, ITT activation; 2.8% with a trend for a 19.1% decrease in EMG (p = 0.1). There were no significant differences in the dorsiflexors/PF EMG ratio. One Hz torque was potentiated 15.7% with an increased absolute RTD of 12.8%, but no change in relative RTD. The results suggested hyperbaric-induced decreases in PF activation contributed to voluntary torque loss. A lack of torque reduction with higher frequency tetanic stimulation (2-40 Hz) suggested that 6 ATA does not impair myofilament kinetics, whereas twitch potentiation may include changes in excitation-contraction coupling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this study was to investigate the effect of 22 °C local muscle temperature of intact human plantar flexors performing fatiguing contractions on evoked and voluntary contractile properties before and after fatigue. Twelve subjects were tested on plantar flexor voluntary torque, percent muscle activation derived from twitch interpolation, integrated electromyographic (iEMG) activity, and evoked torque and temporal characteristics of maximal twitch and tetanic stimulations before fatigue and 1, 5, and 10 min after intermittent, high-intensity, isometric fatigue under both normothermic and hypothermic conditions. Hypothermic and normothermic changes between time points were analysed by repeated-measures analysis of variance. Normothermic fatigue induced small to large effects (Cohen’s d: 0.29–3.06) on voluntary and evoked contractile properties, whereas most effects of unfatigued hypothermia were limited to rate-dependent processes (Cohen’s d: 0.78–1.70). Most tetanic properties were potentiated 1 min after normothermic fatigue, but remained unchanged by hypothermic fatigue, resulting in significant differences between the two conditions. Soleus iEMG significantly declined 1 min after normothermic fatigue (–29%), but not after hypothermic fatigue. Twitch torque was potentiated by 29% one minute after fatigue while normothermic, but was potentiated by 46% while hypothermic; rate of twitch torque development and time to peak twitch were potentiated by 39% and 10% while normothermic, but 89% and 28% while hypothermic. Although voluntary contractile properties are generally impaired soon after normothermic fatigue, most were not after hypothermic fatigue. Furthermore, evoked contractile properties were generally higher 1 min after hypothermic fatigue. We conclude that the hypothermic condition slows the recovery of potentiated evoked contractile properties back to baseline values.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Le système vestibulaire et le cortex moteur participent au contrôle de la posture, mais la nature de leurs interactions est peu documentée. Afin de caractériser les interactions vestibulo-corticales qui sous-tendent le contrôle de l’équilibre en position debout, l’activité électromyographique (EMG) du soléaire (SOL), du tibial antérieur (TA) et du péronier long (PERL) de la jambe droite a été enregistrée chez 14 sujets sains. La stimulation galvanique vestibulaire (GVS) a été appliquée avec la cathode derrière l’oreille droite ou gauche à différents intervalles inter-stimulus (ISIs) avant ou après la stimulation magnétique transcrânienne induisant des potentiels moteurs évoqués (MEPs) au niveau des muscles enregistrés. Lorsque que la cathode était à droite, une inhibition des MEPs a été observée au niveau du SOL à un ISI de 40 et 130 ms et une facilitation des MEPS a été observée au niveau TA à un ISI de 110 ms. Lorsque la cathode était à gauche, une facilitation des MEPs a été observée au niveau du SOL, du TA et du PERL à un ISI de 50, -10 et 0 ms respectivement. L’emplacement de ces interactions sur l’axe neural a été estimé en fonction des ISIs et en comparant l’effet de la GVS sur les MEPs à son effet sur l’EMG de base et sur le réflexe-H. Selon ces analyses, les modulations observées peuvent avoir lieu au niveau spinal ou au niveau supraspinal. Ces résultats suggèrent que les commandes de la voie corticospinale peuvent être modulées par le système vestibulaire à différents niveaux de l’axe neuronal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Le système vestibulaire et le cortex moteur participent au contrôle de la posture, mais la nature de leurs interactions est peu documentée. Afin de caractériser les interactions vestibulo-corticales qui sous-tendent le contrôle de l’équilibre en position debout, l’activité électromyographique (EMG) du soléaire (SOL), du tibial antérieur (TA) et du péronier long (PERL) de la jambe droite a été enregistrée chez 14 sujets sains. La stimulation galvanique vestibulaire (GVS) a été appliquée avec la cathode derrière l’oreille droite ou gauche à différents intervalles inter-stimulus (ISIs) avant ou après la stimulation magnétique transcrânienne induisant des potentiels moteurs évoqués (MEPs) au niveau des muscles enregistrés. Lorsque que la cathode était à droite, une inhibition des MEPs a été observée au niveau du SOL à un ISI de 40 et 130 ms et une facilitation des MEPS a été observée au niveau TA à un ISI de 110 ms. Lorsque la cathode était à gauche, une facilitation des MEPs a été observée au niveau du SOL, du TA et du PERL à un ISI de 50, -10 et 0 ms respectivement. L’emplacement de ces interactions sur l’axe neural a été estimé en fonction des ISIs et en comparant l’effet de la GVS sur les MEPs à son effet sur l’EMG de base et sur le réflexe-H. Selon ces analyses, les modulations observées peuvent avoir lieu au niveau spinal ou au niveau supraspinal. Ces résultats suggèrent que les commandes de la voie corticospinale peuvent être modulées par le système vestibulaire à différents niveaux de l’axe neuronal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Projeto de Graduação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Licenciado em Fisioterapia