946 resultados para Electric modulus


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, Silicon Carbide (SiC) semiconductor devices have shown promise for high density power electronic applications, due to their electrical and thermal properties. In this paper, the performance of SiC JFETs for hybrid electric vehicle (HEV) applications is investigated at heatsink temperatures of 100 °C. The thermal runaway characteristics, maximum current density and packaging temperature limitations of the devices are considered and the efficiency implications discussed. To quantify the power density capabilities of power transistors, a novel 'expression of rating' (EoR) is proposed. A prototype single phase, half-bridge voltage source inverter using SiC JFETs is also tested and its performance at 25 °C and 100 °C investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper studies 2G high-temperature superconducting (HTS) coils for electric machine armature windings, using finite element method (FEM) and H formulation. A FEM model for 2G HTS racetrack coil is built in COMSOL, and is well validated by comparing calculated ac loss with experimental measurements. The FEM model is used to calculate transport loss in HTS armature windings, using air-cored design. We find that distributed winding used in conventional machine design is an effective way to reduce transport loss of HTS armature winding, in terms of air-cored design. Based on our study, we give suggestions on the design of low loss HTS armature winding. © 2002-2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electron and hole conducting 10-nm-wide polymer morphologies hold great promise for organic electro-optical devices such as solar cells and light emitting diodes. The self-assembly of block-copolymers (BCPs) is often viewed as an efficient way to generate such materials. Here, a functional block copolymer that contains perylene bismide (PBI) side chains which can crystallize via π-π stacking to form an electron conducting microphase is patterned harnessing hierarchical electrohydrodynamic lithography (HEHL). HEHL film destabilization creates a hierarchical structure with three distinct length scales: (1) micrometer-sized polymer pillars, containing (2) a 10-nm BCP microphase morphology that is aligned perpendicular to the substrate surface and (3) on a molecular length scale (0.35-3 nm) PBI π-π-stacks traverse the HEHL-generated plugs in a continuous fashion. The good control over BCP and PBI alignment inside the generated vertical microstructures gives rise to liquid-crystal-like optical dichroism of the HEHL patterned films, and improves the electron conductivity across the film by 3 orders of magnitude. © 2013 American Chemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mille-feuille structured amorphous selenium (a-Se)-arsenic selenide (As2Se3) multi-layered thin film and a mixed amorphous Se-As2Se3 film is compared from a durability perspective and photo-electric perspective. The former is durable to incident laser induced degradation after numerous laser scans and does not crystallise till 105 of annealing, both of which are improved properties from the mixed evaporated film. In terms of photo-electric properties, the ratio between the photocurrent and the dark current improved whereas the increase of the dark current was higher than that of As2Se3 due to the unique current path developed within the mille-feuille structure. Implementing this structure into various amorphous semiconductors may open up a new possibility towards structure-sensitive amorphous photoconductors. © 2013 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analysis is presented of a database of 67 tests on 21 clays and silts of undrained shear stress-strain data of fine-grained soils. Normalizations of secant G in terms of initial mean effective stress p9 (i.e., G=p9 versus log g) or undrained shear strength cu (i.e., G=cu versus log g) are shown to be much less successful in reducing the scatter between different clays than the approach that uses the maximum shear modulus,Gmax, a technique still not universally adopted by geotechnical researchers and constitutive modelers. Analysis of semiempirical expressions forGmax is presented and a simple expression that uses only a void-ratio function and a confining-stress function is proposed. This is shown to be superior to a Hardin-style equation, and the void ratio function is demonstrated as an alternative to an overconsolidation ratio (OCR) function. To derive correlations that offer reliable estimates of secant stiffness at any required magnitude of working strain, secant shear modulus G is normalized with respect to its small-strain value Gmax, and shear strain g is normalized with respect to a reference strain gref at which this stiffness has halved. The data are corrected to two standard strain rates to reduce the discrepancy between data obtained from static and cyclic testing. The reference strain gref is approximated as a function of the plasticity index.Aunique normalized shear modulus reduction curve in the shape of a modified hyperbola is fitted to all the available data up to shear strains of the order of 1%. As a result, good estimates can be made of the modulus reduction G/Gmax ±30% across all strain levels in approximately 90% of the cases studied. New design charts are proposed to update the commonly used design curves. © 2013 American Society of Civil Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Against a background of increasing energy demand and rising fuel prices, hybrid-electric propulsion systems (HEPS) have the potential to significantly reduce fuel consumption in the aviation industry, particularly in the lighter sectors. By taking advantage of both Electric Motor (EM) and Internal Combustion Engine (ICE), HEPS provide not only a benefit in fuel saving but also a reduction in take-off noise and the emission levels. This research considers the design and sizing process of a hybrid-electric propulsion system for a single-seat demonstrator aircraft, the experimental derivation of the ICE map and the EM parameters. In addition to the experimental data, a novel modeling approach including several linked desktop PC software packages is presented to analyze and optimize hybrid-electric technology for aircraft. Further to the analysis of a parallel hybrid-electric, mid-scale aircraft, this paper also presents a scaling approach for a 20 kg UAV and a 50 tonne inter-city airliner. At the smaller scale, two different mission profiles are analyzed: an ISR mission profile, where the simulation routine optimizes the component size of the hybrid-electric propulsion system with respect to fuel saving, and a maximum duration profile; where the flight endurance is determined as a function of payload weight. At the larger scale, the performance of a 50 tonne inter-city airliner is modeled, based on a hybrid-electric gas-turbine, assuming a range of electric boost powers and battery masses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The response to a local, tip-induced electric field of ferroelastic domains in thin polycrystalline lead zirconate titanate films with predominantly (110) orientation has been studied using Enhanced Piezoresponse Force Microscopy. Two types of reversible polytwin switching between well-defined orientations have been observed. When a-c domains are switched to other forms of a-c domains, the ferroelastic domain walls rotate in-plane by 109.5°, and when a-c domains are switched to c-c domains (or vice-versa), the walls rotate by 54.75°. © 2013 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the authors investigate a number of design and market considerations for an axial flux superconducting electric machine design that uses high temperature superconductors. The axial flux machine design is assumed to utilise high temperature superconductors in both wire (stator winding) and bulk (rotor field) forms, to operate over a temperature range of 65-77 K, and to have a power output in the range from 10s of kW up to 1 MW (typical for axial flux machines), with approximately 2-3 T as the peak trapped field in the bulk superconductors. The authors firstly investigate the applicability of this type of machine as a generator in small- and medium-sized wind turbines, including the current and forecasted market and pricing for conventional turbines. Next, a study is also carried out on the machine's applicability as an in-wheel hub motor for electric vehicles. Some recommendations for future applications are made based on the outcome of these two studies. Finally, the cost of YBCO-based superconducting (2G HTS) wire is analysed with respect to competing wire technologies and compared with current conventional material costs and current wire costs for both 1G and 2G HTS are still too great to be economically feasible for such superconducting devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current generation of advanced gravitational wave detectors utilize titania-doped tantala/silica multilayer stacks for their mirror coatings. The properties of the low-refractive-index silica are well known; however, in the absence of detailed direct measurements, the material parameters of Young's modulus and coefficient of thermal expansion (CTE) of the high refractive index material, titania-doped tantala, have been assumed to be equal to values measured for pure tantala coatings. In order to ascertain the true values necessary for thermal noise calculations, we have undertaken measurements of Young's modulus and CTE through the use of nanoindentation and thermal-bending measurements. The measurements were designed to assess the effects of titania doping concentration and post-deposition heat-treatment on the measured values in order to evaluate the possibility of optimizing material parameters to further improve thermal noise in the detector. Young's modulus measurements on pure tantala and 25% and 55% titania-doped tantala show a wide range of values, from 132 to 177 GPa, dependent on both titania concentration and heat-treatment. Measurements of CTE give values of (3.9 +/- 0.1) x 10^-6 K^-1 and (4.9 +/- 0.3) x 10^-6 K^-1 for 25% and 55% titania-doped tantala, respectively, without dependence on post-deposition heat-treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using first-principles band structure methods, we have systematically studied the electronic structures, magnetic stabilities, and half-metal properties of 3d transition-metal (TM) doped Rocksalt MgO compounds TMMg3O4 (TM = V, Cr, Mn, Fe, Co, and Ni). The calculations reveal that only CrMg3O4 has a ferromagnetic stability among the six compounds, which is explained by double-exchange mechanism. The magnetic stability is affected by the doping concentration of TM if the top valance band is composed of partially occupied t(2g) states. In addition, CrMg3O4 is a half-metallic ferromagnet. The origins of half-metallic and ferromagnetic properties are explored. The Curie temperature (T-c) of CrMg3O4 is 182 K. And it is hard for CrMg3O4 to deform due to the large bulk modulus and shear modulus, so it is a promising spintronic material. Our calculations provide the first available information on the magnetic properties of 3d TM-doped MgO.