887 resultados para Ecology and Environment


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Boccardia proboscidea is a recently introduced polychaete in South Africa where it is a notorious pest of commercially reared abalone. Populations were originally restricted to abalone farms but a recent exodus into the wild at some localities has raised conservation concerns due to the species’ invasive status in other parts of the world. Here, we assessed the dispersal potential of B. proboscidea by using a population genetic and oceanographic modeling approach. Since the worm is in its incipient stages of a potential invasion, we used the closely related Polydora hoplura as a proxy due its similar reproductive strategy and its status as a pest of commercially reared oysters in the country. Populations of P. hoplura were sampled from seven different localities and a section of the mtDNA gene, Cyt b and the intron ATPSa was amplified. A high resolution model of the coastal waters around southern Africa was constructed using the Regional Ocean Modeling System. Larvae were represented by passive drifters that were deployed at specific points along the coast and dispersal was quantified after a 12-month integration period. Our results showed discordance between the genetic and modeling data. There was low genetic structure (Φ = 0.04 for both markers) and no geographic patterning of mtDNA and nDNA haplotypes. However, the dispersal model found limited connectivity around Cape Point—a major phylogeographic barrier on the southern African coast. This discordance was attributed to anthropogenic movement of larvae and adult worms due to vectors such as aquaculture and shipping. As such, we hypothesized that cryptic dispersal could be overestimating genetic connectivity. Though wild populations of B. proboscidea could become isolated due to the Cape Point barrier, anthropogenic movement may play the critical role in facilitating the dispersal and spread of this species on the southern African coast.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Boccardia proboscidea is a recently introduced polychaete in South Africa where it is a notorious pest of commercially reared abalone. Populations were originally restricted to abalone farms but a recent exodus into the wild at some localities has raised conservation concerns due to the species’ invasive status in other parts of the world. Here, we assessed the dispersal potential of B. proboscidea by using a population genetic and oceanographic modeling approach. Since the worm is in its incipient stages of a potential invasion, we used the closely related Polydora hoplura as a proxy due its similar reproductive strategy and its status as a pest of commercially reared oysters in the country. Populations of P. hoplura were sampled from seven different localities and a section of the mtDNA gene, Cyt b and the intron ATPSa was amplified. A high resolution model of the coastal waters around southern Africa was constructed using the Regional Ocean Modeling System. Larvae were represented by passive drifters that were deployed at specific points along the coast and dispersal was quantified after a 12-month integration period. Our results showed discordance between the genetic and modeling data. There was low genetic structure (Φ = 0.04 for both markers) and no geographic patterning of mtDNA and nDNA haplotypes. However, the dispersal model found limited connectivity around Cape Point—a major phylogeographic barrier on the southern African coast. This discordance was attributed to anthropogenic movement of larvae and adult worms due to vectors such as aquaculture and shipping. As such, we hypothesized that cryptic dispersal could be overestimating genetic connectivity. Though wild populations of B. proboscidea could become isolated due to the Cape Point barrier, anthropogenic movement may play the critical role in facilitating the dispersal and spread of this species on the southern African coast.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Lagrangian progression of a biological community was followed in a filament of the Mauritanian upwelling system, north-west Africa, during offshore advection. The inert dual tracers sulfur hexafluoride and helium-3 labelled a freshly upwelled patch of water that was mapped for 8 days. Changes in biological, physical, and chemical characteristics were measured, including phytoplankton productivity, nitrogen assimilation, and regeneration. Freshly upwelled water contained high nutrient concentrations but was depleted in N compared to Redfield stoichiometry. The highest rate of primary productivity was measured on the continental shelf, associated with high rates of nitrogen assimilation and a phytoplankton community dominated by diatoms and flagellates. Indicators of phytoplankton abundance and activity decreased as the labelled water mass transited the continental shelf slope into deeper water, possibly linked to the mixed layer depth exceeding the light penetration depth. By the end of the study, the primary productivity rate decreased and was associated with lower rates of nitrogen assimilation and lower nutrient concentrations. Nitrogen regeneration and assimilation took place simultaneously. Results highlighted the importance of regenerated NHC 4 in sustaining phytoplankton productivity and indicate that the upwelled NO3 pool contained an increasing fraction of regenerated NO3 as it advected offshore. By calculating this fraction and incorporating it into an f ratio formulation, we estimated that of the 12:38Tg C of annual regional production, 4:73Tg C was exportable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Lagrangian progression of a biological community was followed in a filament of the Mauritanian upwelling system, north-west Africa, during offshore advection. The inert dual tracers sulfur hexafluoride and helium-3 labelled a freshly upwelled patch of water that was mapped for 8 days. Changes in biological, physical, and chemical characteristics were measured, including phytoplankton productivity, nitrogen assimilation, and regeneration. Freshly upwelled water contained high nutrient concentrations but was depleted in N compared to Redfield stoichiometry. The highest rate of primary productivity was measured on the continental shelf, associated with high rates of nitrogen assimilation and a phytoplankton community dominated by diatoms and flagellates. Indicators of phytoplankton abundance and activity decreased as the labelled water mass transited the continental shelf slope into deeper water, possibly linked to the mixed layer depth exceeding the light penetration depth. By the end of the study, the primary productivity rate decreased and was associated with lower rates of nitrogen assimilation and lower nutrient concentrations. Nitrogen regeneration and assimilation took place simultaneously. Results highlighted the importance of regenerated NHC 4 in sustaining phytoplankton productivity and indicate that the upwelled NO3 pool contained an increasing fraction of regenerated NO3 as it advected offshore. By calculating this fraction and incorporating it into an f ratio formulation, we estimated that of the 12:38Tg C of annual regional production, 4:73Tg C was exportable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large efforts are on-going within the EU to prepare the Marine Strategy Framework Directive’s (MSFD) assessment of the environmental status of the European seas. This assessment will only be as good as the indicators chosen to monitor the eleven descriptors of good environmental status (GEnS). An objective and transparent framework to determine whether chosen indicators actually support the aims of this policy is, however, not yet in place. Such frameworks are needed to ensure that the limited resources available to this assessment optimize the likelihood of achieving GEnS within collaborating states. Here, we developed a hypothesis-based protocol to evaluate whether candidate indicators meet quality criteria explicit to the MSFD, which the assessment community aspires to. Eight quality criteria are distilled from existing initiatives, and a testing and scoring protocol for each of them is presented. We exemplify its application in three worked examples, covering indicators for three GEnS descriptors (1, 5 and 6), various habitat components (seaweeds, seagrasses, benthic macrofauna and plankton), and assessment regions (Danish, Lithuanian and UK waters). We argue that this framework provides a necessary, transparent and standardized structure to support the comparison of candidate indicators, and the decision-making process leading to indicator selection. Its application could help identify potential limitations in currently available candidate metrics and, in such cases, help focus the development of more adequate indicators. Use of such standardized approaches will facilitate the sharing of knowledge gained across the MSFD parties despite context-specificity across assessment regions, and support the evidence-based management of European seas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large efforts are on-going within the EU to prepare the Marine Strategy Framework Directive’s (MSFD) assessment of the environmental status of the European seas. This assessment will only be as good as the indicators chosen to monitor the eleven descriptors of good environmental status (GEnS). An objective and transparent framework to determine whether chosen indicators actually support the aims of this policy is, however, not yet in place. Such frameworks are needed to ensure that the limited resources available to this assessment optimize the likelihood of achieving GEnS within collaborating states. Here, we developed a hypothesis-based protocol to evaluate whether candidate indicators meet quality criteria explicit to the MSFD, which the assessment community aspires to. Eight quality criteria are distilled from existing initiatives, and a testing and scoring protocol for each of them is presented. We exemplify its application in three worked examples, covering indicators for three GEnS descriptors (1, 5 and 6), various habitat components (seaweeds, seagrasses, benthic macrofauna and plankton), and assessment regions (Danish, Lithuanian and UK waters). We argue that this framework provides a necessary, transparent and standardized structure to support the comparison of candidate indicators, and the decision-making process leading to indicator selection. Its application could help identify potential limitations in currently available candidate metrics and, in such cases, help focus the development of more adequate indicators. Use of such standardized approaches will facilitate the sharing of knowledge gained across the MSFD parties despite context-specificity across assessment regions, and support the evidence-based management of European seas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ecosystem engineers that increase habitat complexity are keystone species in marine systems, increasing shelter and niche availability, and therefore biodiversity. For example, kelp holdfasts form intricate structures and host the largest number of organisms in kelp ecosystems. However, methods that quantify 3D habitat complexity have only seldom been used in marine habitats, and never in kelp holdfast communities. This study investigated the role of kelp holdfasts (Laminaria hyperborea) in supporting benthic faunal biodiversity. Computer-aided tomography (CT-) scanning was used to quantify the three-dimensional geometrical complexity of holdfasts, including volume, surface area and surface fractal dimension (FD). Additionally, the number of haptera, number of haptera per unit of volume, and age of kelps were estimated. These measurements were compared to faunal biodiversity and community structure, using partial least-squares regression and multivariate ordination. Holdfast volume explained most of the variance observed in biodiversity indices, however all other complexity measures also strongly contributed to the variance observed. Multivariate ordinations further revealed that surface area and haptera per unit of volume accounted for the patterns observed in faunal community structure. Using 3D image analysis, this study makes a strong contribution to elucidate quantitative mechanisms underlying the observed relationship between biodiversity and habitat complexity. Furthermore, the potential of CT-scanning as an ecological tool is demonstrated, and a methodology for its use in future similar studies is established. Such spatially resolved imager analysis could help identify structurally complex areas as biodiversity hotspots, and may support the prioritization of areas for conservation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ecosystem engineers that increase habitat complexity are keystone species in marine systems, increasing shelter and niche availability, and therefore biodiversity. For example, kelp holdfasts form intricate structures and host the largest number of organisms in kelp ecosystems. However, methods that quantify 3D habitat complexity have only seldom been used in marine habitats, and never in kelp holdfast communities. This study investigated the role of kelp holdfasts (Laminaria hyperborea) in supporting benthic faunal biodiversity. Computer-aided tomography (CT-) scanning was used to quantify the three-dimensional geometrical complexity of holdfasts, including volume, surface area and surface fractal dimension (FD). Additionally, the number of haptera, number of haptera per unit of volume, and age of kelps were estimated. These measurements were compared to faunal biodiversity and community structure, using partial least-squares regression and multivariate ordination. Holdfast volume explained most of the variance observed in biodiversity indices, however all other complexity measures also strongly contributed to the variance observed. Multivariate ordinations further revealed that surface area and haptera per unit of volume accounted for the patterns observed in faunal community structure. Using 3D image analysis, this study makes a strong contribution to elucidate quantitative mechanisms underlying the observed relationship between biodiversity and habitat complexity. Furthermore, the potential of CT-scanning as an ecological tool is demonstrated, and a methodology for its use in future similar studies is established. Such spatially resolved imager analysis could help identify structurally complex areas as biodiversity hotspots, and may support the prioritization of areas for conservation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Viruses are a major cause of coccolithophore bloom demise in both temperate and sub-temperate oceanic regions. Most infection studies on coccolithoviruses have been conducted with a single virus strain, and the effect of intragenus competition by closely related coccolithoviruses has been ignored. Here we conducted combined infection experiments, infecting Emiliania huxleyi CCMP 2090 with two coccolithoviruses: EhV-86 and EhV-207 both simultaneously and independently. EhV-207 displayed a shorter lytic cycle and increased production potential than EhV-86 and was remarkably superior under competitive conditions. Although the viruses displayed identical adsorption kinetics in the first 2 h post infection, EhV-207 gained a numerical advantage as early as 8 h post infection. Quantitative polymerase chain reaction (PCR) revealed that when infecting in combination, EhV-207 was not affected by the presence of EhV-86, whereas EhV-86 was quickly out-competed, and a significant reduction in free and cell-associated EhV-86 was seen as early as 2 days after the initial infection. The observation of such clear phenotypic differences between genetically distinct, yet similar, coccolithovirus strains, by flow cytometry and quantitative real-time PCR allowed tentative links to the burgeoning genomic, transcriptomic and metabolic data to be made and the factors driving their selection, in particular to the de novo coccolithovirus-encoded sphingolipid biosynthesis pathway. This work illustrates that, even within a family, not all viruses are created equally, and the potential exists for relatively small genetic changes to infer disproportionately large competitive advantages for one coccolithovirus over another, ultimately leading to a few viruses dominating the many.