368 resultados para ENOS
Resumo:
Mode of access: Internet.
Resumo:
Endothelial dysfunction in ischemic acute renal failure (IARF) has been attributed to both direct endothelial injury and to altered endothelial nitric oxide synthase ( eNOS) activity, with either maximal upregulation of eNOS or inhibition of eNOS by excess nitric oxide ( NO) derived from iNOS. We investigated renal endothelial dysfunction in kidneys from Sprague-Dawley rats by assessing autoregulation and endothelium-dependent vasorelaxation 24 h after unilateral ( U) or bilateral ( B) renal artery occlusion for 30 (U30, B30) or 60 min (U60, B60) and in sham-operated controls. Although renal failure was induced in all degrees of ischemia, neither endothelial dysfunction nor altered facilitation of autoregulation by 75 pM angiotensin II was detected in U30, U60, or B30 kidneys. Baseline and angiotensin II-facilitated autoregulation were impaired, methacholine EC50 was increased, and endothelium-derived hyperpolarizing factor ( EDHF) activity was preserved in B60 kidneys. Increasing angiotensin II concentration restored autoregulation and increased renal vascular resistance ( RVR) in B60 kidneys; this facilitated autoregulation, and the increase in RVR was abolished by 100 mu M furosemide. Autoregulation was enhanced by N-omega-nitro-L-arginine methyl ester. Peri-ischemic inhibition of inducible NOS ameliorated renal failure but did not prevent endothelial dysfunction or impaired autoregulation. There was no significant structural injury to the afferent arterioles with ischemia. These results suggest that tubuloglomerular feedback is preserved in IARF but that excess NO and probably EDHF produce endothelial dysfunction and antagonize autoregulation. The threshold for injury-producing, detectable endothelial dysfunction was higher than for the loss of glomerular filtration rate. Arteriolar endothelial dysfunction after prolonged IARF is predominantly functional rather than structural.
Resumo:
NADPH oxidase (Nox)-derived reactive oxygen species (ROS) are known to be involved in angiotensin II-induced hypertension and endothelial dysfunction. Several Nox isoforms are expressed in the vessel wall, among which Nox2 is especially abundant in the endothelium. Endothelial Nox2 levels rise during hypertension but little is known about the cell-specific role of endothelial Nox2 in vivo. To address this question, we generated transgenic mice with endothelial-specific overexpression of Nox2 (Tg) and studied the effects on endothelial function and blood pressure. Tg had an about twofold increase in endothelial Nox2 levels which was accompanied by an increase in p22phox levels but no change in levels of other Nox isoforms or endothelial nitric oxide synthase (eNOS). Basal NADPH oxidase activity, endothelial function and blood pressure were unaltered in Tg compared to wild-type littermates. Angiotensin II caused a greater increase in ROS production in Tg compared to wild-type aorta and attenuated acetylcholine-induced vasorelaxation. Both low and high dose chronic angiotensin II infusion increased telemetric ambulatory blood pressure more in Tg compared to wild-type, but with different patterns of BP change and aortic remodeling depending upon the dose of angiotensin II dose. These results indicate that an increase in endothelial Nox2 levels contributes to angiotensin II-induced endothelial dysfunction, vascular remodeling and hypertension. © 2011 The Author(s).
Resumo:
Vascular endothelial growth factor-A (VEGF) is critical for angiogenesis but fails to induce neovascularization in ischemic tissue lesions in mice lacking endothelial nitric oxide synthase (eNOS). VEGF receptor-2 (VEGFR-2) is critical for angiogenesis, although little is known about the precise role of endothelial VEGFR-1 and its downstream effectors in this process. Here we have used a chimeric receptor approach in which the extracellular domain of the epidermal growth factor receptor was substituted for that of VEGFR-1 (EGLT) or VEGFR-2 (EGDR) and transduced into primary cultures of human umbilical vein endothelial cells (HUVECs) using a retroviral system. Activation of HUVECs expressing EGLT or EGDR induced rapid phosphorylation of eNOS at Ser1177, release of NO, and formation of capillary networks, similar to VEGF. Activation of eNOS by VEGFR-1 was dependent on Tyr794 and was mediated via phosphatidylinositol 3-kinase, whereas VEGFR-2 Tyr951 was involved in eNOS activation via phospholipase Cgamma1. Consistent with these findings, the VEGFR-1-specific ligand placenta growth factor-1 activated phosphatidylinositol 3-kinase and VEGF-E, which is selective for VEGFR-2-activated phospholipase Cgamma1. Both VEGFR-1 and VEGFR-2 signal pathways converged on Akt, as dominant-negative Akt inhibited the NO release and in vitro tube formation induced following activation of EGLT and EGDR. The identification Tyr794 of VEGFR-1 as a key residue in this process provides direct evidence of endothelial VEGFR-1 in NO-driven in vitro angiogenesis. These studies provide new sites of modulation in VEGF-mediated vascular morphogenesis and highlight new therapeutic targets for management of vascular diseases.
Resumo:
Vascular endothelial growth factor-A (VEGF), which binds to both VEGF receptor-1 (Flt1) and VEGFR-2 (KDR/Flk-1), requires nitric oxide (NO) to induce angiogenesis in a cGMP-dependent manner. Here we show that VEGF-E, a VEGFR-2-selective ligand stimulates NO release and tube formation in human umbilical vein endothelial cells (HUVEC). Inhibition of phospholipase Cgamma (PLCgamma) with U73122 abrogated VEGF-E induced endothelial cell migration, tube formation and NO release. Inhibition of endothelial nitric oxide synthase (eNOS) using l-NNA blocked VEGF-E-induced NO release and angiogenesis. Pre-incubation of HUVEC with the soluble guanylate cyclase inhibitor, ODQ, or the protein kinase G (PKG) inhibitor, KT-5823, had no effect on angiogenesis suggesting that the action of VEGF-E is cGMP-independent. Our data provide the first demonstration that VEGFR-2-mediated NO signaling and subsequent angiogenesis is through a mechanism that is dependent on PLCgamma but independent of cGMP and PKG.
Resumo:
Pre-eclampsia, a pregnancy-specific multi-organ syndrome characterized by widespread endothelial damage, is a new risk factor for cardiovascular disease. No therapies exist to prevent or treat this condition, even to achieve a modest improvement in pregnancy length or birth weight. Co-administration of soluble VEGFR-1 [VEGF (vascular endothelial growth factor) receptor-1; more commonly known as sFlt-1 (soluble Fms-like tyrosine kinase-1)] and sEng (soluble endoglin) to pregnant rats elicits severe pre-eclampsia-like symptoms. These two anti-angiogenic factors are increased dramatically prior to the clinical onset of pre-eclampsia and are quite possibly the 'final common pathway' responsible for the accompanying signs of hypertension and proteinuria as they can be reversed by VEGF administration in animal models. HO-1 (haem oxygenase-1), an anti-inflammatory enzyme, and its metabolite, CO (carbon monoxide), exert protective effects in several organs against oxidative stimuli. In a landmark publication, we showed that the HO-1 pathway inhibits sFlt-1 and sEng in cultured cells and human placental tissue explants. Both CO and NO (nitric oxide) promote vascular homoeostasis and vasodilatation, and activation of VEGFR-1 or VEGFR-2 induced eNOS (endothelial nitric oxide synthase) phosphorylation, NO release and HO-1 expression. Our studies established the HO-1/CO pathway as a negative regulator of cytokine-induced sFlt-1 and sEng release and eNOS as a positive regulator of VEGF-mediated vascular morphogenesis. These findings provide compelling evidence for a protective role of HO-1 in pregnancy and identify it as a target for the treatment of pre-eclampsia. Any agent that is known to up-regulate HO-1, such as statins, may have potential as a therapy. Any intervention achieving even a modest prolongation of pregnancy or amelioration of the condition could have a significant beneficial health impact worldwide.
Resumo:
Introduction: Resveratrol (RVT) found in red wine protects against erectile dysfunction and relaxes penile tissue (corpus cavernosum) via a nitric oxide (NO) independent pathway. However, the mechanism remains to be elucidated. Hydrogen sulfide (H2S) is a potent vasodilator and neuromodulator generated in corpus cavernosum. Aims: We investigated whether RVT caused the relaxation of mice corpus cavernosum (MCC) through H2S. Methods: H2S formation is measured by methylene blue assay and vascular reactivity experiments have been performed by DMT strip myograph in CD1 MCC strips. Main Outcome Measures: Endothelial NO synthase (eNOS) inhibitor Nω-Nitro-L-arginine (L-NNA, 0.1mM) or H2S inhibitor aminooxyacetic acid (AOAA, 2mM) which inhibits both cystathionine-β-synthase (CBS) and cystathionine-gamma-lyase (CSE) enzyme or combination of AOAA with PAG (CSE inhibitor) has been used in the presence/absence of RVT (0.1mM, 30min) to elucidate the role of NO or H2S pathways on the effects of RVT in MCC. Concentration-dependent relaxations to RVT, L-cysteine, sodium hydrogen sulfide (NaHS) and acetylcholine (ACh) were studied. Results: Exposure of murine corpus cavernosum to RVT increased both basal and L-cysteine-stimulated H2S formation. Both of these effects were reversed by AOAA but not by L-NNA. RVT caused concentration-dependent relaxation of MCC and that RVT-induced relaxation was significantly inhibited by AOAA or AOAA+PAG but not by L-NNA. L-cysteine caused concentration-dependent relaxations, which are inhibited by AOAA or AOAA+PAG significantly. Incubation of MCC with RVT significantly increased L-cysteine-induced relaxation, and this effect was inhibited by AOAA+PAG. However, RVT did not alter the effect of exogenous H2S (NaHS) or ACh-induced relaxations. Conclusions: These results demonstrate that RVT-induced relaxation is at least partly dependent on H2S formation and acts independent of eNOS pathway. In phosphodiesterase 5 inhibitor (PDE-5i) nonresponder population, combination therapy with RVT may reverse erectile dysfunction via stimulating endogenous H2S formation. Yetik-Anacak G, Dereli MV, Sevin G, Ozzayim O, Erac Y, and Ahmed A. Resveratrol stimulates hydrogen sulfide (H2S) formation to relax murine corpus cavernosum.
Resumo:
This study aimed to evaluate the influence of the main meteorological mechanisms trainers and inhibitors of precipitation, and the interactions between different scales of operation, the spatial and temporal variability of the annual cycle of precipitation in the Rio Grande do Norte. Além disso, considerando as circunstâncias locais e regionais, criando assim uma base científica para apoiar ações futuras na gestão da demanda de água no Estado. Database from monthly precipitation of 45 years, ranging between 1963 and 2007, data provided by EMPARN. The methodology used to achieve the results was initially composed of descriptive statistical analysis of historical data to prove the stability of the series, were applied after, geostatistics tool for plotting maps of the variables, within the geostatistical we opted for by Kriging interpolation method because it was the method that showed the best results and minor errors. Among the results, we highlight the annual cycle of rainfall the State which is influenced by meteorological mechanisms of different spatial and temporal scales, where the main mechanisms cycle modulators are the Conference Intertropical Zone (ITCZ) acting since midFebruary to mid May throughout the state, waves Leste (OL), Lines of instability (LI), breeze systems and orographic rainfall acting mainly in the Coastal strip between February and July. Along with vortice of high levels (VCANs), Complex Mesoscale Convective (CCMs) and orographic rain in any region of the state mainly in spring and summer. In terms of larger scale phenomena stood out El Niño and La Niña, ENSO in the tropical Pacific basin. In La Niña episodes usually occur normal or rainy years, as upon the occurrence of prolonged periods of drought are influenced by EL NIÑO. In the Atlantic Ocean the standard Dipole also affects the intensity of the rainfall cycle in State. The cycle of rains in Rio Grande do Norte is divided into two periods, one comprising the regions West, Central and the Western Portion of the Wasteland Potiguar mesoregions of west Chapada Borborema, causing rains from midFebruary to mid-May and a second period of cycle, between February-July, where rains occur in mesoregions East and of the Wasteland, located upwind of the Chapada Borborema, both interspersed with dry periods without occurrence of significant rainfall and transition periods of rainy - dry and dry-rainy where isolated rainfall occur. Approximately 82% of the rainfall stations of the state which corresponds to 83.4% of the total area of Rio Grande do Norte, do not record annual volumes above 900 mm. Because the water supply of the State be maintained by small reservoirs already are in an advanced state of eutrophication, when the rains occur, act to wash and replace the water in the reservoirs, improving the quality of these, reducing the eutrophication process. When rain they do not significantly occur or after long periods of shortages, the process of eutrophication and deterioration of water in dams increased significantly. Through knowledge of the behavior of the annual cycle of rainfall can have an intimate knowledge of how it may be the tendency of rainy or prone to shortages following period, mainly observing the trends of larger scale phenomena
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
INTRODUCTION: Vascular endothelial growth factor (VEGF)-induced angiogenesis requires endothelial nitric oxide synthase (eNOS) activation, however, the mechanism is largely unknown. As nitric oxide(NO) inhibits endothelial proliferation to promote capillary formation (Am J Path,159:993-1008,2001) and p21WAF1 is an important cell cycle inhibitor, we hypothesised that eNOS-induced angiogenesis requires up regulation of p21WAF1. METHODS: Human and porcine endothelial cells were cultured on growth factor reduced Materigel for in vitro tube formation and in vivo angiogenesis was assessed by hind limb ligation ischemia model.Conversely, we propose that the cytoprotective enzyme, heme oxygenase-1(HO-1), may suppress p21WAF1 to limit angiogenesis. RESULTS: The expression of p21WAF1 was up regulated in porcine aorticenothelial cells stablely transfected with a constitutively activated form of eNOS (eNOSS1177D) as well as in HUVEC infected by adenovirus encoding eNOSS1177D. When these cells were plated on growth-factor reduced Matrigel (compaired to empty vector), they enhanced in vitro angiogenesis, which was inhibited following knockdown of p21WAF1. Furthermore, over expression of p21WAF1 led to increased tube formation while p21WAF1 knockdown abrogated vascular endothelial growth factor(VEGF) and fibroblast growth factor (FGF-2) mediated angiogenesis.Conversely, the cytoprotective enzyme, heme oxygenase-1 (HO-1) when over expressed decreased p21WAF1 expression and reduced VEGF, FGF-2 and eNOSS1177D-induced angiogenesis. CONCLUSIONS: These results demonstrate that eNOS-induced angiogenesis requires up regulation of p21WAF1/CIP1 wherease, induction of HO-1 will decrease the expression of p21WAF1/CIP1 to limit angiogenesisindicating that eNOS and HO-1 regulate angiogenesis via p21WAF1/CIP1 in adiametrically opposed manner and that p21WAF1/CIP1 appears to be a central regulator of angiogenesis that offers a new therapeutic target.
Resumo:
Maintenance of vascular homeostasis is an active process that is dependent on continuous signaling by the quiescent endothelial cells (ECs) that line mature vessels. Defects in vascular homeostasis contribute to numerous disorders of significant clinical impact including hypertension and atherosclerosis. The signaling pathways that are active in quiescent ECs are distinct from those that regulate angiogenesis but are comparatively poorly understood. Here we demonstrate that the previously uncharacterized scaffolding protein Caskin2 is a novel regulator of EC quiescence and that loss of Caskin2 in mice results in elevated blood pressure at baseline. Caskin2 is highly expressed in ECs from various vascular beds both in vitro and in vivo. When adenovirally expressed in vitro, Caskin2 inhibits EC proliferation and migration but promotes survival during hypoxia and nutrient deprivation. Likewise, loss of Caskin2 in vivo promotes increased vascular branching and permeability in mouse and zebrafish models. Caskin2 knockout mice are born in normal Mendelian ratios and appear grossly normal during early adulthood. However, they have consistently elevated systolic and diastolic blood pressure at baseline and significant context-dependent abnormalities in systemic metabolism (e.g., body weight, fat deposition, and glucose homeostasis). Although the precise molecular mechanisms of these effects remain unclear, we have shown that Caskin2 interacts with several proteins known to have important roles in endothelial biology and cardiovascular disease including the serine/threonine phosphatase PP1, the endothelial receptor Tie1, and eNOS, which is a critical regulator of vascular homeostasis. Ongoing work seeks to further characterize the functions of Caskin2 and its mechanisms of action with a focus on how Caskin2-mediated regulation of endothelial phenotype relates to its systemic effects on cardiovascular and metabolic function.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
The Cutri Formation’s, type location, exposed in the NW of Mallorca, Spain has previously been described by Álvaro et al., (1989) and further interpreted by Abbots (1989) unpublished PhD thesis as a base-of-slope carbonate apron. Incorporating new field and laboratory analysis this paper enhances this interpretation. From this analysis, it can be shown without reasonable doubt that the Cutri Formation was deposited in a carbonate base-of-slope environment on the palaeowindward side of a Mid-Jurassic Tethyan platform. Key evidence such as laterally extensive exposures, abundant deposits of calciturbidtes and debris flows amongst hemipelagic deposits strongly support this interpretation.
Resumo:
The study of the Upper Jurassic-Lower Cretaceous deposits (Higueruelas, Villar del Arzobispo and Aldea de Cortés Formations) of the South Iberian Basin (NW Valencia, Spain) reveals new stratigraphic and sedimentological data, which have significant implications on the stratigraphic framework, depositional environments and age of these units. The Higueruelas Fm was deposited in a mid-inner carbonate platform where oncolitic bars migrated by the action of storms and where oncoid production progressively decreased towards the uppermost part of the unit. The overlying Villar del Arzobispo Fm has been traditionally interpreted as an inner platform-lagoon evolving into a tidal-flat. Here it is interpreted as an inner-carbonate platform affected by storms, where oolitic shoals protected a lagoon, which had siliciclastic inputs from the continent. The Aldea de Cortés Fm has been previously interpreted as a lagoon surrounded by tidal-flats and fluvial-deltaic plains. Here it is reinterpreted as a coastal wetland where siliciclastic muddy deposits interacted with shallow fresh to marine water bodies, aeolian dunes and continental siliciclastic inputs. The contact between the Higueruelas and Villar del Arzobispo Fms, classically defined as gradual, is also interpreted here as rapid. More importantly, the contact between the Villar del Arzobispo and Aldea de Cortés Fms, previously considered as unconformable, is here interpreted as gradual. The presence of Alveosepta in the Villar del Arzobispo Fm suggests that at least part of this unit is Kimmeridgian, unlike the previously assigned Late Tithonian-Middle Berriasian age. Consequently, the underlying Higueruelas Fm, previously considered Tithonian, should not be younger than Kimmeridgian. Accordingly, sedimentation of the Aldea de Cortés Fm, previously considered Valangian-Hauterivian, probably started during the Tithonian and it may be considered part of the regressive trend of the Late Jurassic-Early Cretaceous cycle. This is consistent with the dinosaur faunas, typically Jurassic, described in the Villar del Arzobispo and Aldea de Cortés Fms.
Resumo:
El Ecosistema de Afloramiento Peruano (EAP) es una de las zonas marinas con mayor productividad pesquera en el mundo y por su ubicación geográfica, es afectada por procesos físicos remotos, principalmente por la variabilidad climática interanual proveniente del océano Pacifico Ecuatorial, cuya señal dominante es El Niño y la Oscilación Sur (ENOS). Con el fin de evaluar los efectos de ENOS frente al Perú, se desarrolló el Índice Térmico Costero Peruano (ITCP) que representa el 87,7% de la variación total de las anomalías de la temperatura superficial del mar del EAP. Se analizó el periodo 1982-2014, detectándose 12 periodos con condiciones cálidas y 16 con condiciones frías. El ITCP tuvo una tendencia lineal, un componente de bajas frecuencias y un componente de ruido, con 1,5%, 94,5 % y 4 % de contribución a la varianza total, respectivamente. El ITCP presenta ventajas respecto a otros índices climáticos de la costa peruana, porque comprende el área representativa del Ecosistema de Afloramiento Peruano y porque captura la señal del afloramiento costero así como de los efectos térmicos de El Niño y La Niña.