985 resultados para E Coli Expression


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The recent demonstration of the occurrence in rat brain and other nonpancreatic tissues of carboxypeptidase A (CPA) gene transcripts without associated catalytic activity could be ascribed to the presence of a soluble endogenous protein inhibitor. This tissue carboxypeptidase inhibitor (TCI), detected by the inhibition of added bovine pancreatic CPA, was purified from rat brain. Peptides were obtained by partial proteolysis of purified TCI, a protein of approximately 30 kDa, and starting from their sequences, a full-length cDNA encoding a 223-amino acid protein containing three potential phosphorylation sites was cloned from a cDNA library. Its identity with TCI was shown by expression in Escherichia coli of a recombinant protein recognized by antibodies raised against native TCI and display characteristic CPA-inhibiting activity. TCI appears as a hardly reversible, non-competitive, and potent inhibitor of CPA1 and CPA2 (Ki approximately 3 nM) and mast-cell CPA (Ki = 16 nM) and inactive on various other proteases. This pattern of selectivity might be attributable to a limited homology of a 11-amino acid sequence with sequences within the activation segments of CPA and CPB known to interact with residues within their active sites. The widespread expression of TCI in a number of tissues (e.g., brain, lung, or digestive tract) and its apparently cytosolic localization point to a rather general functional role, e.g., in the control of cytosolic protein degradation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

TFC5, the unique and essential gene encoding the B" component of the Saccharomyces cerevisiae RNA polymerase III transcription factor (TF)IIIB has been cloned. It encodes a 594-amino acid protein (67,688 Da). Escherichia coli-produced B" has been used to reconstitute entirely recombinant TFIIIB that is fully functional for TFIIIC-directed, as well as TATA box-dependent, DNA binding and transcription. The DNase I footprints of entirely recombinant TFIIIB, composed of B", the 67-kDa Brf, and TATA box-binding protein, and TFIIIB reconstituted with natural B" are indistinguishable. A truncated form of B" lacking 39 N-terminal and 107 C-terminal amino acids is also functional for transcription.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A cDNA encoding rat oxidosqualene lanosterol-cyclase [lanosterol synthase; (S)-2,3-epoxysqualene mutase (cyclizing, lanosterol-forming), EC 5.4.99.7] was cloned and sequenced by a combination of PCR amplification, using primers based on internal amino acid sequence of the purified enzyme, and cDNA library screening by oligonucleotide hybridization. An open reading frame of 2199 bp encodes a M(r) 83,321 protein with 733 amino acids. The deduced amino acid sequence of the rat enzyme showed significant homology to the known oxidosqualene cyclases (OSCs) from yeast and plant (39-44% identity) and still retained 17-26% identity to two bacterial squalene cyclases (EC 5.4.99.-). Like other cyclases, the rat enzyme is rich in aromatic amino acids and contains five so-called QW motifs, highly conserved regions with a repetitive beta-strand turn motif. The binding site sequence for the 29-methylidene-2,3-oxidosqualene (29-MOS), a mechanism-based irreversible inhibitor specific for the vertebrate cyclase, is well-conserved in all known OSCs. The hydropathy plot revealed a rather hydrophilic N-terminal region and the absence of a hydrophobic signal peptide. Unexpectedly, this microsomal membrane-associated enzyme showed no clearly delineated transmembrane domain. A full-length cDNA was constructed and subcloned into a pYEUra3 plasmid, selected in Escherichia coli cells, and used to transform the OSC-deficient uracil-auxotrophic SGL9 strain of Saccharomyces cerevisiae. The recombinant rat OSC expressed was efficiently labeled by the mechanism-based inhibitor [3H]29-MOS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Osmoregulated porin gene expression in Escherichia coli is controlled by the two-component regulatory system EnvZ and OmpR. EnvZ, the osmosensor, is an inner membrane protein and a histidine kinase. EnvZ phosphorylates OmpR, a cytoplasmic DNA-binding protein, on an aspartyl residue. Phospho-OmpR binds to the promoters of the porin genes to regulate the expression of ompF and ompC. We describe the use of limited proteolysis by trypsin and ion spray mass spectrometry to characterize phospho-OmpR and the conformational changes that occur upon phosphorylation. Our results are consistent with a two-domain structure for OmpR, an N-terminal phosphorylation domain joined to a C-terminal DNA-binding domain by a flexible linker region. In the presence of acetyl phosphate, OmpR is phosphorylated at only one site. Phosphorylation induces a conformational change that is transmitted to the C-terminal domain via the central linker. Previous genetic analysis identified a region in the C-terminal domain that is required for transcriptional activation. Our results indicate that this region is within a surface-exposed loop. We propose that this loop contacts the alpha subunit of RNA polymerase to activate transcription. Mass spectrometry also reveals an unusual dephosphorylated form of OmpR, the potential significance of which is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To provide tools for functional molecular genetics of the protozoan parasite Entamoeba histolytica, we investigated the use of the prokaryotic neomycin phosphotransferase (NEO) gene as a selectable marker for the transfection of the parasite. An Escherichia coli-derived plasmid vector was constructed (pA5'A3'NEO) containing the NEO coding region flanked by untranslated 5' and 3' sequences of an Ent. histolytica actin gene. Preceding experiments had revealed that amoebae are highly sensitive to the neomycin analogue G418 and do not survive in the presence of as little as 2 micrograms/ml. Transfection of circular pA5'A3'NEO via electroporation resulted in Ent. histolytica trophozoites resistant to G418 up to 100 micrograms/ml. DNA and RNA analyses of resistant cells indicated that (i) the transfected DNA was not integrated into the amoeba genome but was segregated episomally, (ii) in the amoebae, the plasmid replicated autonomously, (iii) the copy number of the plasmid and the expression of NEO-specific RNA were proportional to the amount of G418 used for selection, and (iv) under continuous selection, the plasmid was propagated over an observation period of 6 months. Moreover, the plasmid could be recloned into E. coli and was found to be unrearranged. To investigate the use of pA5'A3'NEO to coexpress other genes in Ent. histolytica, a second marker, the prokaryotic chloramphenicol acetyltransferase (CAT) gene under control of an Ent. histolytica lectin gene promoter was introduced into the plasmid. Transfection of the amoebae with this construct also conferred G418 resistance and, in addition, allowed continuous expression of CAT activity in quantities corresponding to the amount of G418 used for selection. When selection was discontinued, transfected plasmids were lost as indicated by an exponential decline of CAT activity in trophozoite extracts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Enteropathogenic Escherichia coli (EPEC), a major cause of pediatric diarrhea, adheres to epithelial cells and activates host cell signal transduction pathways. We have identified five proteins that are secreted by EPEC and show that this secretion process is critical for triggering signal transduction events in epithelial cells. Protein secretion occurs via two pathways: one secretes a 110-kDa protein and the other mediates export of the four remaining proteins. Secretion of all five proteins was regulated by temperature and the perA locus, two factors which regulate expression of other known EPEC virulence factors. Amino-terminal sequence analysis of the secreted polypeptides identified one protein (37 kDa) as the product of the eaeB gene, a genetic locus previously shown to be necessary for signal transduction. A second protein (39 kDa) showed significant homology with glyceraldehyde-3-phosphate dehydrogenase, while the other three proteins (110, 40, and 25 kDa) were unique. The secreted proteins associated with epithelial cells, and EaeB became resistant to protease digestion upon association, suggesting that intimate interactions are required for transducing signals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Enteropathogenic Escherichia coli (EPEC) causes a characteristic histopathology in intestinal epithelial cells called the attaching and effacing lesion. Although the histopathological lesion is well described the bacterial factors responsible for it are poorly characterized. We have identified four EPEC chromosomal genes whose predicted protein sequences are similar to components of a recently described secretory pathway (type III) responsible for exporting proteins lacking a typical signal sequence. We have designated the genes sepA, sepB, sepC, and sepD (sep, for secretion of E. coli proteins). The predicted Sep polypeptides are similar to the Lcr (low calcium response) and Ysc (yersinia secretion) proteins of Yersinia species and the Mxi (membrane expression of invasion plasmid antigens) and Spa (surface presentation of antigens) regions of Shigella flexneri. Culture supernatants of EPEC strain E2348/69 contain several polypeptides ranging in size from 110 kDa to 19 kDa. Proteins of comparable size were recognized by human convalescent serum from a volunteer experimentally infected with strain E2348/69. A sepB mutant of EPEC secreted only the 110-kDa polypeptide and was defective in the formation of attaching and effacing lesions and protein-tyrosine phosphorylation in tissue culture cells. These phenotypes were restored upon complementation with a plasmid carrying an intact sepB gene. These data suggest that the EPEC Sep proteins are components of a type III secretory apparatus necessary for the export of virulence determinants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We developed a stringently regulated expression system for mammalian cells that uses (i) the RNA polymerase, phi 10 promoter, and T phi transcriptional terminator of bacteriophage T7; (ii) the lac repressor, lac operator, rho-independent transcriptional terminators and the gpt gene of Escherichia coli; (iii) the RNA translational enhancer of encephalomyocarditis virus; and (iv) the genetic background of vaccinia virus. In cells infected with the recombinant vaccinia virus, reporter beta-galactosidase synthesis was not detected in the absence of inducer. An induction of at least 10,000- to 20,000-fold occurred upon addition of isopropyl beta-D-thiogalactopyranoside or by temperature elevation from 30 to 37 degrees C using a temperature-sensitive lac repressor. Regulated synthesis of the secreted and highly glycosylated human immunodeficiency virus 1 envelope protein gp120 was also demonstrated. Yields of both proteins were approximately 2 mg per 10(8) cells in 24 hr. Plasmid transfer vectors for cloning and expression of complete or incomplete open reading frames in recombinant vaccinia viruses are described.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The biosynthesis of gibberellins (GAs) after GA12-aldehyde involves a series of oxidative steps that lead to the formation of bioactive GAs. Previously, a cDNA clone encoding a GA 20-oxidase [gibberellin, 2-oxoglutarate:oxygen oxidoreductase (20-hydroxylating, oxidizing), EC 1.14.11.-] was isolated by immunoscreening a cDNA library from liquid endosperm of pumpkin (Cucurbita maxima L.) with antibodies against partially purified GA 20-oxidase. Here, we report isolation of a genomic clone for GA 20-oxidase from a genomic library of the long-day species Arabidopsis thaliana Heynh., strain Columbia, by using the pumpkin cDNA clone as a heterologous probe. This genomic clone contains a GA 20-oxidase gene that consists of three exons and two introns. The three exons are 1131-bp long and encode 377 amino acid residues. A cDNA clone corresponding to the putative GA 20-oxidase genomic sequence was constructed with the reverse transcription-PCR method, and the identity of the cDNA clone was confirmed by analyzing the capability of the fusion protein expressed in Escherichia coli to convert GA53 to GA44 and GA19 to GA20. The Arabidopsis GA 20-oxidase shares 55% identity and > 80% similarity with the pumpkin GA 20-oxidase at the derived amino acid level. Both GA 20-oxidases share high homology with other 2-oxoglutarate-dependent dioxygenases (2-ODDs), but the highest homology was found between the two GA 20-oxidases. Mapping results indicated tight linkage between the cloned GA 20-oxidase and the GA5 locus of Arabidopsis. The ga5 semidwarf mutant contains a G-->A point mutation that inserts a translational stop codon in the protein-coding sequence, thus confirming that the GA5 locus encodes GA 20-oxidase. Expression of the GA5 gene in Ara-bidopsis leaves was enhanced after plants were transferred from short to long days; it was reduced by GA4 treatment, suggesting end-product repression in the GA biosynthetic pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study was undertaken to define the 5' and 3' regulatory sequences of human von Willebrand factor gene that confer tissue-specific expression in vivo. Transgenic mice were generated bearing a chimeric construct that included 487 bp of 5' flanking sequence and the first exon fused in-frame to the Escherichia coli lacZ gene. In situ histochemical analyses in independent lines demonstrated that the von Willebrand factor promoter targeted expression of LacZ to a subpopulation of endothelial cells in the yolk sac and adult brain. LacZ activity was absent in the vascular beds of the spleen, lung, liver, kidney, testes, heart, and aorta, as well as in megakaryocytes. In contrast, in mice containing the lacZ gene targeted to the thrombomodulin locus, the 5-bromo-4-chloro-3-indolyl beta-D-galactopyranoside reaction product was detected throughout the vascular tree. These data highlight the existence of regional differences in endothelial cell gene regulation and suggest that the 733-bp von Willebrand factor promoter may be useful as a molecular marker to investigate endothelial cell diversity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Holocarboxylase synthetase (HCS) catalyzes the biotinylation of the four biotin-dependent carboxylases in human cells. Patients with HCS deficiency lack activity of all four carboxylases, indicating that a single HCS is targeted to the mitochondria and cytoplasm. We isolated 21 human HCS cDNA clones, in four size classes of 2.0-4.0 kb, by complementation of an Escherichia coli birA mutant defective in biotin ligase. Expression of the cDNA clones promoted biotinylation of the bacterial biotinyl carboxyl carrier protein as well as a carboxyl-terminal fragment of the alpha subunit of human propionyl-CoA carboxylase expressed from a plasmid. The open reading frame encodes a predicted protein of 726 aa and M(r) 80,759. Northern blot analysis revealed the presence of a 5.8-kb major species and 4.0-, 4.5-, and 8.5-kb minor species of poly(A)+ RNA in human tissues. Human HCS shows specific regions of homology with the BirA protein of E. coli and the presumptive biotin ligase of Paracoccus denitrificans. Several forms of HCS mRNA are generated by alternative splicing, and as a result, two mRNA molecules bear different putative translation initiation sites. A sequence upstream of the first translation initiation site encodes a peptide structurally similar to mitochondrial presequences, but it lacks an in-frame ATG codon to direct its translation. We anticipate that alternative splicing most likely mediates the mitochondrial versus cytoplasmic expression, although the elements required for directing the enzyme to the mitochondria remain to be confirmed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introdução: Sepse é uma síndrome complexa definida por resposta inflamatória sistêmica, de origem infecciosa e caracterizada por manifestações múltiplas que podem determinar disfunção ou falência de um ou mais órgãos ou sistemas. É a principal causa de morte em unidades de terapia intensiva em pacientes críticos e tem representado uma fonte constante de preocupação para os sistemas de saúde em todo o mundo, devido, principalmente, às taxas elevadas de morbimortalidade. O tratamento da sepse é um desafio e continua a ser uma tarefa difícil devido a inúmeros fatores interferentes. Um estudo do nosso grupo demonstrou que a Escherichia coli (E. coli) é capaz de se ligar CD16 de um modo independente de opsonina, levando a um aumento na resposta inflamatória e a inibição da sua própria fagocitose, por conseguinte, procurou-se identificar os peptídeos no proteoma da E. coli envolvidos neste cenário. Metodologia: Utilizando a metodologia de Phage Display, que consiste numa técnica de clonagem, que permite a expressão de diversas sequências de peptídeos na superfície de bacteriófagos, nós identificamos 2 peptídeos que obtiveram interação com CD16. Após a seleção dos peptídeos identificamos uma proteína de membrana de E.coli que possui alta similaridade com um de nossos peptídeos selecionados. Nós acreditamos que esta proteína de membrana possa estar envolvida no processo de evasão imune desenvolvida pela E.coli e parece ser um forte candidato como uma nova opção terapêutica para controlar infecções por E. coli. Conclusão: A identificação de proteínas capazes de induzir inibição de fagocitose, através do receptor CD16, pode ser usada como uma nova forma de tratamento da sepse, assim como explorada no tratamento de doenças autoimunes

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stx2d is a recently described Shiga toxin whose cytotoxicity is activated 10- to 1,000-fold by the elastase present in mouse or human intestinal mucus. We examined Shiga toxigenic Escherichia coli (STEC) strains isolated from food and livestock sources for the presence of activatable stx(2d). The stx(2) operons of STEC were first analyzed by PCR-restriction fragment length polymorphism (RFLP) analysis and categorized as stx(2), stx(2c) (vha), stx(2c) (vhb), or stx(2d) (EH250). Subsequently, the stx(2c) (vha) and stx(2c) (vhb) operons were screened for the absence of a PstI site in the stx(2a) subunit gene, a restriction site polymorphism which is a predictive indicator for the stx(2d) (activatable) genotype. Twelve STEC isolates carrying putative stx(2d) operons were identified, and nucleotide sequencing was used to confirm the identification of these operons as stx(2d). The complete nucleotide sequences of seven representative stx(2d) operons were determined. Shiga toxin expression in stx(2d) isolates was confirmed by immunoblotting. stx(2d) isolates were induced for the production of bacteriophages carrying stx. Two isolates were able to produce bacteriophages phi1662a and phi1720a carrying the stx(2d) operons. RFLP analysis of bacteriophage genomic DNA revealed that phi1662a and phi1720a were highly related to each other; however, the DNA sequences of these two stx(2d) operons were distinct. The STEC strains carrying these operons were isolated from retail ground beef. Surveillance for STEC strains expressing activatable stx(2d) Shiga toxin among clinical cases may indicate the significance of this toxin subtype to human health.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The folding of HIV gp41 into a 6-helix bundle drives virus-cell membrane fusion. To examine the structural relationship between the 6-helix bundle core domain and other regions of gp41, we expressed in Escherichia coli, the entire ectodomain of HIV-2(ST) gp41 as a soluble, trimeric maltose-binding protein (MBP)/gp41 chimera. Limiting proteolysis indicated that the Cys-591-Cys-597 disulfide-bonded region is outside a core domain comprising two peptides, Thr-529-Trp-589 and Val-604-Ser-666. A biochemical examination of MBP/gp41 chimeras encompassing these core peptides; indicated that the N-terminal polar segment, 521-528, and C-terminal membrane-proximal segment, 658-666, cooperate in stabilizing the ectodomain. A functional interaction between sequences outside the gp41 core may contribute energy to membrane fusion. (C) 2004 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Translational pausing may occur due to a number of mechanisms, including the presence of non-optimal codons, and it is thought to play a role in the folding of specific polypeptide domains during translation and in the facilitation of signal peptide recognition during see-dependent protein targeting. In this whole genome analysis of Escherichia coli we have found that non-optimal codons in the signal peptide-encoding sequences of secretory genes are overrepresented relative to the mature portions of these genes; this is in addition to their overrepresentation in the 5'-regions of genes encoding non-secretory proteins. We also find increased non-optimal codon usage at the 3' ends of most E. coli genes, in both non-secretory and secretory sequences. Whereas presumptive translational pausing at the 5' and 3' ends of E. coli messenger RNAs may clearly have a general role in translation, we suggest that it also has a specific role in sec-dependent protein export, possibly in facilitating signal peptide recognition. This finding may have important implications for our understanding of how the majority of non-cytoplasmic proteins are targeted, a process that is essential to all biological cells. (C) 2004 Elsevier Inc. All rights reserved.