763 resultados para Dyson, Matt


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dyson's theory of conduction electron spin resonance (CESR) has been used in the limit d less than or equal to delta (d being the thickness of the sample and delta the skin depth of the microwave field) to obtain the microwave conductivity from the (A/B) ratio of the CESR absorbed power derivative. In this work we calculate the CESR absorbed power derivative using Kaplan's approach and show that the (A/B) ratio can be enhanced if asymmetrical penetration of microwave is used, which means that the microwave field enters into the sample from one of the faces. Therefore, the determination of the microwave conductivity from the (A/B) ratio of the CESR line can be performed for thinner samples. Experimentally, asymmetrical penetration can be obtained if one of the sample's faces is covered with a thin gold layer. The determination of microwave conductivity in conducting polymers films is among the possible applications of this method. (C) 2001 Elsevier B.V. Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We derive Virasoro constraints for the zero momentum part of the QCD-like partition functions in the sector of topological charge v. The constraints depend on the topological charge only through the combination N-f +betav/2 where the value of the Dyson index beta is determined by the reality type of the fermions. This duality between flavor and topology is inherited by the small-mass expansion of the partition function and all spectral sum rules of inverse powers of the eigenvalues of the Dirac operator. For the special case beta =2 but arbitrary topological charge the Virasoro constraints are solved uniquely by a generalized Kontsevich model with the potential V(X) = 1/X.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vertex corrections are taken into account in the Schwinger-Dyson equation for the nucleon propagator in a relativistic field theory of fermions and mesons. The usual Hartree-Fock approximation for the nucleon propagator is known to produce the appearance of complex (ghost) poles which violate basic theorems of quantum field theory. In a theory with vector mesons there are vertex corrections that produce a strongly damped vertex function in the ultraviolet. One set of such corrections is known as the Sudakov form factor in quantum electrodynamics. When the Sudakov form factor generated by massive neutral vector mesons is included in the Hartree-Fock approximation to the Schwinger-Dyson equation for the nucleon propagator, the ghost poles disappear and consistency with basic requirements of quantum field theory is recovered.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We construct the Pomeron as an exchange of two nonperturbative gluons, where the nonperturbative gluon propagator is described by an approximate solution of the Schwinger-Dyson equation which contains a dynamically generated gluon mass. We compute the total and elastic differential (dsigma/dt) cross sections for pp scattering, obtaining agreement with the experimental data for a gluon mass m = 370 MeV for LAMBDA(QCD) = 300 MeV. In particular, the Pomeron effectively behaves like a photon-exchange diagram with a coupling determined by the glucon mass.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gigahertz conductivity of pressed pellets of ClO4--doped poly( 3-methylthiophene) can be readily obtained from the asymmetry ratio (A / B) of the electron spin resonance line using Dyson's theory. The measurements were performed in three different frequencies, 1.3, 9.4, and 35 GHz. The temperature dependence of the gigahertz conductivity is sensitive to the heating rate, probably due to the ordering of the randomly assembled anions. (C) 1994 Academic Press, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Complex mass poles, or ghost poles, are present in the Hartree-Fock solution of the Schwinger-Dyson equation for the nucleon propagator in renormalizable models with Yukawa-type meson-nucleon couplings, as shown many years ago by Brown, Puff and Wilets (BPW), These ghosts violate basic theorems of quantum field theory and their origin is related to the ultraviolet behavior of the model interactions, Recently, Krein et.al, proved that the ghosts disappear when vertex corrections are included in a self-consistent way, softening the interaction sufficiently in the ultraviolet region. In previous studies of pi N scattering using ''dressed'' nucleon propagator and bare vertices, did by Nutt and Wilets in the 70's (NW), it was found that if these poles are explicitly included, the value of the isospin-even amplitude A((+)) is satisfied within 20% at threshold. The absence of a theoretical explanation for the ghosts and the lack of chiral symmetry in these previous studies led us to re-investigate the subject using the approach of the linear sigma-model and study the interplay of low-energy theorems for pi N scattering and ghost poles. For bare interaction vertices we find that ghosts are present in this model as well and that the A((+)) value is badly described, As a first approach to remove these complex poles, we dress the vertices with phenomenological form factors and a reasonable agreement with experiment is achieved, In order to fix the two cutoff parameters, we use the A((+)) value for the chiral limit (m(pi) --> 0) and the experimental value of the isoscalar scattering length, Finally, we test our model by calculating the phase shifts for the S waves and we find a good agreement at threshold. (C) 1997 Elsevier B.V. B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using a form of the effective potential for composite operators with a variational approach we show that it is possible to get different directions of the chiral phase transition in QCD. Which one occurs depends on the way the Schwinger-Dyson equation for the fermion self-energy is used in the 2-loop term of the effective potential. We must choose the 2-loop term which agrees with phenomenology in each form of the effective potential.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the chiral symmetry breaking in QCD, using an effective potential for composite operators, with infrared finite gluon propagators that have been found by numerical calculation of the Schwinger-Dyson equations as well as in lattice simulations. The existence of a gluon propagator that is finite at k2 = 0 modifies substantially the transition between the phases with and without chiral symmetry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The phenomenology of a QCD-Pomeron model based on the exchange of a pair of non-perturbative gluons, i.e. gluon fields with a finite correlation length in the vacuum, is studied in comparison with the phenomenology of QCD chiral symmetry breaking, based on non-perturbative solutions of Schwinger-Dyson equations for the quark propagator including these non-perturbative gluon effects. We show that these models are incompatible, and point out some possibles origins of this problem.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We compute the critical coupling constant for the dynamical chiral-symmetry breaking in a model of quantum chromodynamics, solving numerically the quark self-energy using infrared finite gluon propagators found as solutions of the Schwinger-Dyson equation for the gluon, and one gluon propagator determined in numerical lattice simulations. The gluon mass scale screens the force responsible for the chiral breaking, and the transition occurs only for a larger critical coupling constant than the one obtained with the perturbative propagator. The critical coupling shows a great sensibility to the gluon mass scale variation, as well as to the functional form of the gluon propagator.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nonperturbative infrared finite solutions for the gluon polarization tensor have been found, and the possibility that gluons may have a dynamically generated mass is supported by recent Monte Carlo simulation on the lattice. These solutions differ among themselves, due to different approximations performed when solving the Schwinger-Dyson equations for the gluon polarization tensor. Only approximations that minimize energy are meaningful, and, according to this, we compute an effective potential for composite operators as a function of these solutions in order to distinguish which one is selected by the vacuum. © 1997 Elsevier Science B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nearest-neighbor spacing distributions proposed by four models, namely, the Berry-Robnik, Caurier-Grammaticos-Ramani, Lenz-Haake, and the deformed Gaussian orthogonal ensemble, as well as the ansatz by Brody, are applied to the transition between chaos and order that occurs in the isotropic quartic oscillator. The advantages and disadvantages of these five descriptions are discussed. In addition, the results of a simple extension of the expression for the Dyson-Mehta statistic Δ3 are compared with those of a more popular one, usually associated with the Berry-Robnik formalism. ©1999 The American Physical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The condition for the global minimum of the vacuum energy for a non-Abelian gauge theory with a dynamically generated gauge boson mass scale which implies the existence of a nontrivial IR fixed point of the theory was shown. Thus, this vacuum energy depends on the dynamical masses through the nonperturbative propagators of the theory. The results show that the freezing of the QCD coupling constant observed in the calculations can be a natural consequence of the onset of a gluon mass scale, giving strong support to their claim.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We discuss phenomenological tests for the frozen infrared behavior of the running coupling constant and gluon propagators found in some solutions of Schwinger-Dyson equations of the gluonic sector of QCD. We verify that several observables can be used in order to select the different expressions of αs found in the literature. We test the effect of the nonperturbative coupling in the τ-lepton decay rate into nonstrange hadrons, in the ρ vector meson helicity density matrix that are produced in the χc2 → ρρ decay, in the photon to pion transition form factor, and compute the cross-sections for elastic proton-proton scattering and exclusive ρ production in deep inelastic scattering. These quantities depend on the infrared behavior of the coupling constant at different levels, we discuss the reasons for this dependence and argue that the existent and future data can be used to test the approximations performed to solve the Schwinger-Dyson equations and they already seem to select one specific infrared behavior of the coupling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this article we study the general structure and special properties of the Schwinger-Dyson equation for the gluon propagator constructed with the pinch technique, together with the question of how to obtain infrared finite solutions, associated with the generation of an effective gluon mass. Exploiting the known all-order correspondence between the pinch technique and the background field method, we demonstrate that, contrary to the standard formulation, the non-perturbative gluon self-energy is transverse order-by-order in the dressed loop expansion, and separately for gluonic and ghost contributions. We next present a comprehensive review of several subtle issues relevant to the search of infrared finite solutions, paying particular attention to the role of the seagull graph in enforcing transversality, the necessity of introducing massless poles in the three-gluon vertex, and the incorporation of the correct renormalization group properties. In addition, we present a method for regulating the seagull-type contributions based on dimensional regularization; its applicability depends crucially on the asymptotic behavior of the solutions in the deep ultraviolet, and in particular on the anomalous dimension of the dynamically generated gluon mass. A linearized version of the truncated Schwinger-Dyson equation is derived, using a vertex that satisfies the required Ward identity and contains massless poles belonging to different Lorentz structures. The resulting integral equation is then solved numerically, the infrared and ultraviolet properties of the obtained solutions are examined in detail, and the allowed range for the effective gluon mass is determined. Various open questions and possible connections with different approaches in the literature are discussed. © SISSA 2006.