986 resultados para Durand, A. B. (Asher Brown), 1796-1886.
Resumo:
A previous study from our laboratory showed that maternal food restriction (MFR) delays thermoregulation in newborn rats. In neonates brown adipose tissue (BAT) is essential for thermogenesis due to the presence of uncoupling proteins (UCPs). The aim of this study was to evaluate the influence of MFR on the UCPs mRNA and protein expression in BAT and skeletal muscle (SM) of the newborn rat. Female Wistar EPM-1 control rats (CON) received chow ad libitum during pregnancy, whereas food-restricted dams (RES) received 50% of the amount ingested by CON. Fifteen hours after birth, the litters were weighed and sacrificed. Blood was collected for hormonal analysis. BAT and SM were used for determination of UCPs mRNA and protein expression, and Ca2+-ATPase sarcoplasmic reticulum (SERCA1). RES pups showed a significant reduction in body weight and fat content at birth. MFR caused a significant increase in the expression of UCP1 and UCP2 in BAT, without changes in UCP3 and SERCA1 expression in BAT and SM. No differences between groups were found for leptin, T4 and glucose levels. RES pups showed increased insulin and decreased T3 levels. The delay in development of thermoregulation previously described in RES animals appears not to result from impairment in thermogenesis, but from an increase in heat loss, since MFR caused low birth weight in pups, leading to greater surface/volume ratio. The higher expression of UCP1 and UCP2 in BAT suggests a compensatory mechanism to increased thermogenesis. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
We have carried out high contrast imaging of 70 young, nearby B and A stars to search for brown dwarf and planetary companions as part of the Gemini NICI Planet-Finding Campaign. Our survey represents the largest, deepest survey for planets around high-mass stars (≈1.5-2.5 M ☉) conducted to date and includes the planet hosts β Pic and Fomalhaut. We obtained follow-up astrometry of all candidate companions within 400 AU projected separation for stars in uncrowded fields and identified new low-mass companions to HD 1160 and HIP 79797. We have found that the previously known young brown dwarf companion to HIP 79797 is itself a tight (3 AU) binary, composed of brown dwarfs with masses 58$^{+21}_{-20}$ M Jup and 55$^{+20}_{-19}$ M Jup, making this system one of the rare substellar binaries in orbit around a star. Considering the contrast limits of our NICI data and the fact that we did not detect any planets, we use high-fidelity Monte Carlo simulations to show that fewer than 20% of 2 M ☉ stars can have giant planets greater than 4 M Jup between 59 and 460 AU at 95% confidence, and fewer than 10% of these stars can have a planet more massive than 10 M Jup between 38 and 650 AU. Overall, we find that large-separation giant planets are not common around B and A stars: fewer than 10% of B and A stars can have an analog to the HR 8799 b (7 M Jup, 68 AU) planet at 95% confidence. We also describe a new Bayesian technique for determining the ages of field B and A stars from photometry and theoretical isochrones. Our method produces more plausible ages for high-mass stars than previous age-dating techniques, which tend to underestimate stellar ages and their uncertainties.
Resumo:
Ultraviolet B (UVB) radiation, in addition to being carcinogenic, is also immunosuppressive. Immunologically, UVB induces suppression locally, at the site of irradiation, or systemically, by inducing the production of a variety of immunosuppressive cytokines. Systemic effects include suppression of delayed-type hypersensitivity (DTH) responses to a variety of antigens (e.g. haptens, proteins, bacterial antigens, or alloantigens). One of the principal mediators of UV-induced immune suppression is the T helper-2 (Th2) cytokine interleukin-10 (IL-10); this suggests that UV irradiation induces suppression by shifting the immune response from a Th1 (cellular) to a Th2 (humoral) response. These "opposing" T helper responses are usually mutually exclusive, and polarized Th1 or Th2 responses may lead to either protection from infection or increased susceptibility to disease, depending on the infectious agent and the route of infection.^ This study examines the effects of UVB irradiation on cellular and humoral responses to Borrelia burgdorferi (Bb), the causative agent of Lyme disease (LD) in both immunization and infectious disease models; in addition, it examines the role of T cells in protection from and pathology of Bb infection. Particular emphasis is placed on the Bb-specific antibody responses following irradiation since UVB effects on humoral immunity are not fully understood. Mice were irradiated with a single dose of UV and then immunized (in complete Freund's adjuvant) or infected with Bb (intradermally at the base of the tail) in order to examine both DTH and antibody responses in both systems. UVB suppressed the Th1-associated antibodies IgG2a and IgG2b in both systems, as well as the DTH response to Bb in a dose dependent manner. Injection of anti-IL-10 antibody into UV-irradiated mice within 24 h after UV exposure restored the DTH response, as well as the Th1 antibody (IgG2a and IgG2b) response. In addition, injecting recombinant IL-10 mimicked some of the effects of UV radiation.^ Bb-specific Th1 T cell lines (BAT2.1-2.3) were generated to examine the role of T cells in Lyme borreliosis. All lines were CD4$\sp+,$ $\alpha\beta\sp+$ and proliferated specifically in response to Bb. The BAT2 cell lines not only conferred a DTH response to naive C3H recipients, but reduced the number of organisms recovered from the blood and tissues of mice infected with Bb. Furthermore, BAT2 cell lines protected mice from Bb-induced periarthritis. ^
Resumo:
BACKGROUND An increased incidence of nasolacrimal duct fistula in the offspring of dam J and three of her sons (bulls A, B and C) prompted a study to investigate the prevalence and clinical manifestation of this anomaly. The dam J, bull B, 255 direct offspring of bulls A, B, and C and eight other direct and indirect offspring of cow J were examined. The periocular region of each animal was examined for unilateral or bilateral nasolacrimal duct fistula and the location, appearance and size of the lesions. RESULTS Of 265 cattle examined, 54 had unilateral (n = 24) or bilateral fistula (n = 30). The prevalence of affected offspring differed significantly among the three bulls. The fistulae were located medial to the medial canthus of the eye and were 1 to 10 mm (median, 1 mm) in height and 1 to 12 mm (median, 2 mm) in length. The shape of the opening was circular in 58, oval in 23 and slit-like in three. One other animal had a large opening with an atypical shape and another had an abnormal medial canthus with several fistulous openings. Seventy openings were pigmented and 52 were hairless. The fistulae were clinically significant in 12 animals. CONCLUSIONS The findings suggest a hereditary cause of nasolacrimal duct fistula in Brown Swiss cattle.
Resumo:
Transient exposure of brown trout embryos from fertilization until hatch (70 days) to 17β-estradiol (E2) was investigated. Embryos were exposed to 3.8 and 38.0 ng/L E2 for 2h, respectively, under four scenarios: (A) exposure once at the day of fertilization (0 days post-fertilization, dpf), (B) once at eyeing stage (38 dpf), (C) weekly exposure until hatch or (D) bi-weekly exposure until hatch. Endpoints to assess estrogen impact on embryo development were fertilization success, chronological sequence of developmental events, hatching process, larval malformations, heart rate, body length and mortality. Concentration-dependent acceleration of development until median hatch was observed in all exposure scenarios with the strongest effect observed for embryos exposed once at 0 dpf. In addition, the hatching period was significantly prolonged by 4-5 days in groups receiving single estrogen exposures (scenarios A and B). Heart rate on hatching day was significantly depressed with increasing E2 concentrations, with the strongest effect observed for embryos exposed at eyeing stage. Estrogenic exposure at 0 dpf significantly reduced body length at hatch, not depending on whether this was a single exposure or the first of a series (scenarios A and D). The key finding is that even a single, transient E2 exposure during embryogenesis had significant effects on brown trout development. Median hatch, hatching period, heart rate and body length at hatch were found to be highly sensitive biomarkers responsive to estrogenic exposure during embryogenesis. Treatment effects were observable only at the post-hatch stage.
Resumo:
Interleukin 4 (IL-4) is a pleotropic cytokine affecting a wide range of cell types in both the mouse and the human. These activities include regulation of the growth and differentiation of both T and B lymphocytes. The activities of IL-4 in nonprimate, nonmurine systems are not well established. Herein, we demonstrate in the bovine system that IL-4 upregulates production of IgM, IgG1, and IgE in the presence of a variety of costimulators including anti-IgM, Staphylococcus aureus cowan strain I, and pokeweed mitogen. IgE responses are potentiated by the addition of IL-2 to IL-4. Culture of bovine B lymphocytes with IL-4 in the absence of additional costimulators resulted in the increased surface expression of CD23 (low-affinity Fc epsilon RII), IgM, IL-2R, and MHC class II in a dose-dependent manner. IL-4 alone increased basal levels of proliferation of bulk peripheral blood mononuclear cells but in the presence of Con A inhibited proliferation. In contrast to the activities of IL-4 in the murine system, proliferation of TH1- and TH2-like clones was inhibited in a dose-dependent manner as assessed by antigen-or IL-2-driven in vitro proliferative responses. These observations are consistent with the role of IL-4 as a key player in regulation of both T and B cell responses.
Resumo:
Heinrich Gross
Resumo:
David Kaufmann
Resumo:
Heinrich Gross
Resumo:
Martin Schreiner
Resumo:
L. Wittmack
Resumo:
Von Oberl. Dr. F. Ludwig