944 resultados para Durability


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A combined study of dust control and low-cost surface improvements of soil and aggregate materials for immediate (and intermediate) use as a treated surface course is being conducted in three concurrent phases: (1) laboratory screening of various additives thought to have potential for long-lasting dust palliation, soil-additive strength, durability, and additive retention potential; (2) test road construction, using those additives from the screening studies that indicate promise for performance and serviceability; and (3) observation and tests of constructed sections for evaluation of the additive's contribution to performance and serviceability as well as relationship to initial costs. A brief review is presented of the problem, some methods of measuring it, previously adopted approaches to it, project field tests and a portion of the results thus far, and portions of the laboratory work accomplished in the screening studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The AASHTO strategic plan in 2005 for bridge engineering identified extending the service life of bridges and accelerating bridge construction as two of the grand challenges in bridge engineering. These challenges have the objective of producing safer and more economical bridges at a faster rate with a minimum service life of 75 years and reduced maintenance cost to serve the country’s infrastructure needs. Previous studies have shown that a prefabricated full-depth precast concrete deck system is an innovative technique that accelerates the rehabilitation process of a bridge deck, extending its service life with reduced user delays and community disruptions and lowering its life-cycle costs. Previous use of ultra-high performance concrete (UHPC) for bridge applications in the United States has been considered to be efficient and economical because of its superior structural characteristics and durability properties. Full-depth UHPC waffle deck panel systems have been developed over the past three years in Europe and the United States. Subsequently, a single span, 60-ft long and 33-ft wide prototype bridge with full-depth prefabricated UHPC waffle deck panels has been designed and built for a replacement bridge in Wapello County, Iowa. The structural performance characteristics and the constructability of the UHPC waffle deck system and its critical connections were studied through an experimental program at the structural laboratory of Iowa State University (ISU). Two prefabricated full-depth UHPC waffle deck (8 feet by 9 feet 9 inches by 8 inches) panels were connected to 24-ft long precast girders, and the system was tested under service, fatigue, overload, and ultimate loads. Three months after the completion of the bridge with waffle deck system, it was load tested under live loads in February 2012. The measured strain and deflection values were within the acceptable limits, validating the structural performance of the bridge deck. Based on the laboratory test results, observations, field testing of the prototype bridge, and experience gained from the sequence of construction events such as panel fabrication and casting of transverse and longitudinal joints, a prefabricated UHPC waffle deck system is found to be a viable option to achieve the goals of the AASHTO strategic plan.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The stability of air bubbles in fresh concrete can have a profound influence of the potential durability of the system, because excessive losses during placement and consolidation can compromise the ability of the mixture to resist freezing and thawing. The stability of air void systems developed by some air entraining admixtures (AEAs) could be affected by the presence of some polycarboxylate-based water reducing admixtures (WRAs). The foam drainage test provides a means of measuring the potential stability of air bubbles in a paste. A barrier to acceptance of the test was that there was little investigation of the correlation with field performance. The work reported here was a limited exercise seeking to observe the stability of a range of currently available AEA/WRA combinations in the foam drainage test; then, to take the best and the worst and observe their stabilities on concrete mixtures in the lab. Based on the data collected, the foam drainage test appears to identify stable combinations of AEA and WRA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Concrete durability may be considered as the ability to maintain serviceability over the design life without significant deterioration, and is generally a direct function of the mixture permeability. Therefore, reducing permeability will improve the potential durability of a given mixture and, in turn, improve the serviceability and longevity of the structure. Given the importance of this property, engineers often look for methods that can decrease permeability. One approach is to add chemical compounds known as integral waterproofing admixtures or permeability-reducing admixtures, which help fill and block capillary pores in the paste. Currently, there are no standard approaches to evaluate the effectiveness of permeability-reducing admixtures or to compare different products in the US. A review of manufacturers’ data sheets shows that a wide range of test methods have been used, and rarely are the same tests used on more than one product. This study investigated the fresh and hardened properties of mixtures containing commercially available hydrophilic and hydrophobic types of permeability-reducing admixtures. The aim was to develop a standard test protocol that would help owners, engineers, and specifiers compare different products and to evaluate their effects on concrete mixtures that may be exposed to hydrostatic or non-hydrostatic pressure. In this experimental program, 11 concrete mixtures were prepared with a fixed water-to-cement ratio and cement content. One plain mixture was prepared as a reference, 5 mixtures were prepared using the recommended dosage of the different permeability-reducing admixtures, and 5 mixtures were prepared using double the recommended dosage. Slump, air content, setting time, compressive and flexural strength, shrinkage, and durability indicating tests including electrical resistivity, rapid chloride penetration, air permeability, permeable voids, and sorptivity tests were conducted at various ages. The data are presented and recommendations for a testing protocol are provided.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

HR-116 is concerned with the relationship of carbonate aggregate to aging of highway concrete. The ultimate purpose of the research is to provide the Materials Department with better criteria for selection of carbonate aggregates for use in highway concrete. The research stems from the problem in Iowa which relates durability of highway concrete to use of certain aggregates. Service records of certain highways have shown that concrete deterioration is related to the source of coarse carbonate aggregate. Research on this problem in projects HR-15 and HR-86 helped define three broad areas of the problem in more detail: 1. The problem of evaluation of rocks which pass current specifications but have poor service records 2. The basic problem of how rocks contribute to distress in concrete 3. The problem of how concrete ages or weathers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Some of Iowa's 13,200 miles of portland cement concrete (pcc) pavement have remained structurally sound for over 50 years while others have suffered premature deterioration. Research has shown that the type of coarse aggregate used in the pcc is the major cause of this premature deterioration. Some coarse aggregates for concrete exhibit a nonuniform performance history. They contribute to premature deterioration on heavily salted primary roadways while providing long maintenance-free life on unsalted secondary pavements. This inconsistency supports the premise that there are at least two mechanisms that contribute to the deterioration. Previous research has shown that one of these mechanisms is a bad pore system. The other is apparently a chemical reaction. The objective of this research is to develop simple rapid test methods to predict the durability of carbonate aggregate in pcc pavement. X-ray diffraction analyses of aggregate samples have been conducted on various beds from numerous quarries producing diffraction plots for more than 200 samples of dolomitic or dolomite aggregates. The crystalline structures of these dolomitic aggregates show maximum-intensity dolomite/ankerite peaks ranging from a d-spacing of 2.884 angstroms for good aggregates to a d-spacing of 2.914 angstroms for nondurable aggregates. If coarse aggregates with known bad pore systems are removed from this summary, the d-spacing values of the remaining aggregates correlate very well with expected service life. This may indicate that the iron substitution for magnesium in the dolomite crystal is associated with the instability of the ferroan dolomite aggregates in pcc pavement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The major objective of this research project was to use thermal analysis techniques in conjunction with x-ray analysis methods to identify and explain chemical reactions that promote aggregate related deterioration in portland cement concrete. Twenty-two different carbonate aggregate samples were subjected to a chemical testing scheme that included: • bulk chemistry (major, minor and selected trace elements) • bulk mineralogy (minor phases concentrated by acid extraction) • solid-solution in the major carbonate phases • crystallite size determinations for the major carbonate phases • a salt treatment study to evaluate the impact of deicer salts Test results from these different studies were then compared to information that had been obtained using thermogravimetric analysis techniques. Since many of the limestones and dolomites that were used in the study had extensive field service records it was possible to correlate many of the variables with service life. The results of this study have indicated that thermogravimetric analysis can play an important role in categorizing carbonate aggregates. In fact, with modern automated thermal analysis systems it should be possible to utilize such methods on a quality control basis. Strong correlations were found between several of the variables that were monitored in this study. In fact, several of the variables exhibited significant correlations to concrete service life. When the full data set was utilized (n = 18), the significant correlations to service life can be summarized as follows ( a = 5% level): • Correlation coefficient, r, = -0.73 for premature TG loss versus service life. • Correlation coefficient, r, = 0.74 for relative crystallite size versus service life. • Correlation coefficient, r, = 0.53 for ASTM C666 durability factor versus service life. • Correlation coefficient, r, = -0.52 for acid-insoluble residue versus service life. Separation of the carbonate aggregates into their mineralogical categories (i.e., calcites and dolomites) tended to increase the correlation coefficients for some specific variables (r sometimes approached 0.90); however, the reliability of such correlations was questionable because of the small number of samples that were present in this study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An ACC overlay is most often the rehabilitative effort used to maintain the serviceability of either an ACC or PCC pavement. The major problem in durability of this ACC overlay comes from reflective cracking. These cracks usually open, allowing water to enter the unsealed crack and strip the ACC in the overlay. The stripping of the ACC allows accelerated deterioration at the crack. Two engineering fabrics were evaluated in this project in order to determine their effectiveness in reducing reflective cracking. These two materials are: • PavePrep, Contech Construction Products Inc. • ProGuard, Phillips Fiber Corporation The data indicated a statistically significant decrease in reflective crack formation in the ProGuard fabric sections compared to control. There was little evidence of a similar effect from the PavePrep fabric sections compared to control. However, the rate of cracking (the rate of formation of new cracks) for both fabrics and control tended to be similar after three years. The benefits of using these fabrics (possible delay of some crack formation by two years) on this project did not outweigh the costs of up to $4200.00 per mile.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the past, culvert pipes were made only of corrugated metal or reinforced concrete. In recent years, several manufacturers have made pipe of lightweight plastic - for example, high density polyethylene (HDPE) - which is considered to be viscoelastic in its structural behavior. It appears that there are several highway applications in which HDPE pipe would be an economically favorable alternative. However, the newness of plastic pipe requires the evaluation of its performance, integrity, and durability; A review of the Iowa Department of Transportation Standard Specifications for Highway and Bridge Construction reveals limited information on the use of plastic pipe for state projects. The objective of this study was to review and evaluate the use of HDPE pipe in roadway applications. Structural performance, soil-structure interaction, and the sensitivity of the pipe to installation was investigated. Comprehensive computerized literature searches were undertaken to define the state-of-the-art in the design and use of HDPE pipe in highway applications. A questionnaire was developed and sent to all Iowa county engineers to learn of their use of HDPE pipe. Responses indicated that the majority of county engineers were aware of the product but were not confident in its ability to perform as well as conventional materials. Counties currently using HDPE pipe in general only use it in driveway crossings. Originally, we intended to survey states as to their usage of HDPE pipe. However, a few weeks after initiation of the project, it was learned that the Tennessee DOT was in the process of making a similar survey of state DOT's. Results of the Tennessee survey of states have been obtained and included in this report. In an effort to develop more confidence in the pipe's performance parameters, this research included laboratory tests to determine the ring and flexural stiffness of HDPE pipe provided by various manufacturers. Parallel plate tests verified all specimens were in compliance with ASTM specifications. Flexural testing revealed that pipe profile had a significant effect on the longitudinal stiffness and that strength could not be accurately predicted on the basis of diameter alone. Realizing that the soil around a buried HDPE pipe contributes to the pipe stiffness, the research team completed a limited series of tests on buried 3 ft-diameter HDPE pipe. The tests simulated the effects of truck wheel loads above the pipe and were conducted with two feet of cover. These tests indicated that the type and quality of backfill significantly influences the performance of HDPE pipe. The tests revealed that the soil envelope does significantly affect the performance of HDPE pipe in situ, and after a certain point, no additional strength is realized by increasing the quality of the backfill.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ASPHALT STABILIZATION (ASPHADUR): Asphadur (now called 3M Additive 5990) was incorporated into asphaltic concrete on a lane delineation, AC resurfacing, project in Council Bluffs. The experimental feature was included in the eastbound lanes of Interstate 480, beginning at the bridge over the Missouri River and ending at the bridge over North 41st Street. The project was constructed in October 1979. The objective of the project was to investigate the manufacturer's claims of improved strength, stability and durability of an asphalt mix. REDUCTION OF REFLECTION CRACKS (MONSANTO BIDIM SYNTHETIC FABRIC): A lane delineation project was constructed in the eastbound lanes of Interstate 480 in Council Bluffs. A synthetic fabric, Monsanto Bidim C-28, was placed between the portland cement concrete and two inches of Type A asphaltic concrete resurfacing containing Asphadur. The experimental feature began at the bridge over the Missouri River and ended at the bridge over North 41st Street. The project was constructed in October 1979. The objective of this experimental project was to determine the effectiveness of the fabric in reducing reflective cracking in an asphaltic concrete overlay.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Corrosion of culvert pipe in Iowa in general is not a serious problem. However, it is potentially significant in some local areas. An opportunity to make a limited durability study of stainless steel pipe was presented when a local fabricating company expressed interest in a cooperative field experiment. The potential of stainless steel pipe is to reduce maintenance costs that are incurred through replacement and upkeep. A new stainless steel material, Allegheny Metal MF-1, was used in a partial fabrication demonstration and later these demonstration sections were delivered to the selected field site for placement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

At the request of Mr. Arnold E. Levine, of the Levine Company, Centerville, Iowa, the Iowa State Highway Commission was asked to observe the partial fabrication of two stainless steel culvert pipes and later the Commission was asked if they would like to study their durability. These pipes were fabricated April 12, 1967 in Des Moines, Personnel of the Design and Materials Department were at the fabrication, but no Research people were present. The idea for the installation was conceived and a site selected after which the project was turned over to the Research Engineer. The stainless steel pipes presumably contained the new Allegheny Metal, MF-1, whose composition is shown in Appendix A. The primary aim of the stainless steel pipe is to reduce long term costs that are incurred through replacement and upkeep. The MF-1 has a theoretical life of infinity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The routine maintenance along Iowa's highways and roadways during the summer growing season is a time consuming and costly endeavor. Trimming around guardrail posts and delineator posts is especially costly due to the handwork required. Trimming costs account for approximately 50% of the shoulder mowing costs according to expense figures obtained from the Iowa Department of Transportation (DOT), Office of Maintenance. The FY 2001 statewide trimming costs for the Iowa DOT was approximately $430,000 ($305,000 labor, $125,000 equipment and materials). This product would be required to perform well for 9-21 years, on average, in order to recoup the cost of installation. This includes the durability of the product, but not the cost of repair due to traffic damage, snowplow and wing damage, or damage caused by mowing operations. Maintenance costs associated with vegetation creep over the mats and repair costs would extend the required service life. As a result of resource realignment, the Iowa DOT roadside maintenance policy, for FY 2003 and the future, will be to eliminate trimming around delineator posts unless the reflector is obstructed. This policy change will effectively eliminate the need for weed control mats due to the significant reduction in trimming. The use of the weed control mats could be justified in areas that are dangerous to maintenance workers such as guardrail installations in high traffic areas. Because the delineator posts are further from the edge of the traveled roadway, there is a reduced risk to the maintenance workforce while hand trimming. Because the DuroTrim Vegetation Control Mats appear to have performed adequately in the field trial, they could be considered for use, where safety conditions warrant. That use should be limited, however, due to the considerable initial cost and changes in Iowa DOT roadside maintenance policy. Application should be limited to instances where the use of the DuroTrim Vegetation Control Mats would have a significant impact on the safety of the roadside maintenance workers. The cost savings, due to the elimination of the trimming and mowing alone, is not enough to justify their use in most situations at their current cost. The test sections will continue to be monitored periodically so that approximate service life can be determined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Portland cement concrete pavements have given excellent service history for Iowa. Many of these pavements placed during the 1920’s and 1930’s are still in service today. Many factors go in to achieve a long term durable concrete pavement. Probably the most important is the durability of the aggregate. Until the 1930’s, pit run gravel was the most predominant aggregate used. Many of these gravels provided long term performance and their durability is dependent upon the carbonate fraction of the gravel. Later, limestone (calcium carbonate) and dolomite (calcium, magnesium carbonate) sources were mined across Iowa. The durability of these carbonate aggregates is largely dependent upon the pore system which can cause freeze thaw problems known as D-cracking, which was a problem with some sources during the 1960’s. Also, some of these carbonate aggregates are also susceptible to deterioration from deicing salts. Geologists have identified the major components that affect the durability of these carbonate aggregates and sources are tested to ensure long term performance in Portland cement concrete. Air entrainment was originally put in concrete to improve scaling resistance. It is well known that air entrainment is required to provide freeze thaw protection in concrete pavements today. In Iowa, air entrainment was not introduced in concrete pavements until 1952. This research investigates properties that made older concrete pavements durable without air entrainment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of High Performance Concrete (HPC) in Iowa has consisted of achieving slightly higher compressive strengths with an emphasis on reduced permeability. Concrete with reduced permeability has increased durability by slowing moisture and chloride ingress. Achieving reduced permeability has typically been accomplished with combinations of slag and Class C fly ash, or the use of blended cements such as locally available Type IS(20), IS(25) and Type IP(25) in conjunction with Class C fly ash. Fly ash has been used in the majority of concrete placed in Iowa since 1984 and slag has been available in Iowa since 1995. During the economic downturn in 2008, one of the cement plants that produced a Type IS(25) cement was forced to shut down, which reduced the availability of blended cements, typically used on HPC deck overlays. Recently, a source of high reactivity metakaolin has been made available. Metakaolin is produced by heating a pure kaolinite clay to 650 to 700 °C in a rotary kiln (calcining). Metakaolin is a white pozzolan that is used to produce concrete with increased strengths, reduced permeability, reduced efflorescence, and resistance to alkali silica reactivity. The W.R. Grace MK-100 metakaolin will likely be available in dissolvable bags between 25 and 50 pounds. Thus, the mix designs were based on the anticipated bag size range for field use. This research evaluated metakaolin mixes with and without Class C fly ash. Results indicated a seven percent replacement with metakaolin produced concrete with increased strengths and low permeability. When used with Class C fly ash, permeability is reduced to very low rating. Metakaolin may be used to enhance hardened concrete properties for use in high performance concrete (HPC).