969 resultados para Donor-Acceptor
Resumo:
Metallo tetraphenylporphyrins form I : I molecular complexes with 4,6-dinitrobenzofuroxan. The molecular association is described in terms of T-n. interaction with porphyrins functioning as donors. The association constants and thermodynamic parameters have been evaluated using optical absorption and 'H nmr spectral methods. Based on the binding constants, the donor ability of various metalloporphyrins can be arranged in the following order: Pd(I1) > Co(I1) > Cu(I1) > Ni(I1) - VO(1V) - 2H > Zn(l1). Electron paramagnetic resonance studies of the complexes reveal that the IT-complexation results in changes in the electronic structure of the central metal ions which are reflected in the changes in the M-N 5 bonding. The dipolar contribution to the acceptor proton chemical shifts in the CoTPP complex has been partitioned from ring current contributions using the shifts observed in the ZnTPP complex. The shifts, along with the line broadening ratios observed for the CoTPP complex, are used to arrive at the possible solution structures of the complexes.
Resumo:
BACKGROUND As blood collection agencies (BCAs) face recurrent shortages of varying blood products, developing a panel comprising donors who are flexible in the product they donate based on same-time inventory demand could be an efficient, cost-effective inventory management strategy. Accounting for prior whole blood (WB) and plasmapheresis donation experience, this article explores current donors’ willingness to change their donation product and identifies the type of information required for such donation flexibility. STUDY DESIGN AND METHODS Telephone interviews (mean, 34 min; SD, 11 min) were conducted with 60 donors recruited via stratified purposive sampling representing six donor groups: no plasma, new to both WB and plasma, new to plasma, plasma, flexible (i.e., alternating between WB and plasma), and maximum (i.e., high frequency alternating between WB and plasma) donors. Participants responded to hypothetical scenarios and open-ended questions relating to their and other donors’ willingness to be flexible. Responses were transcribed and content was analyzed. RESULTS The most frequently endorsed categories varied between donor groups with more prominent differences emerging between the information and support that donors desired for themselves versus that for others. Most donors were willing to change donations but sought improved donation logistics and information regarding inventory levels to encourage flexibility. The factors perceived to facilitate the flexibility of other donors included providing donor-specific information and information regarding different donation types. CONCLUSION Regardless of donation history, donors are willing to be flexible with their donations. To foster a flexible donor panel, BCAs should continue to streamline the donation process and provide information relevant to donors’ experience.
Resumo:
The complex crystallizes in the space group P21/c with four formula units in a unit cell of dimensions a= 12.747, b= 7.416, c= 17.894 A and/3= 90.2 °. The structure has been solved by the symbolic addition procedure using three-dimensional photographic data and refined to an R value of 0.079 for 2019 observed reflexions. The pyramidal nature of the two hetero nitrogen atoms in the antipyrine molecule is inter:nediate between that observed in free antipyrine and in some of its metal complexes. The molecule is more polar than that in crystals of free antipyrine but less so compared with that in metal complexes. In the salicylic acid molecule, the hydroxyl group forms an internal hydrogen bond with one of the oxygen atoms in the carboxyl group. The association between the salicylic acid and the antipyrine molecules is achieved through an intermolecular hydrogen bond with the other carboxyl oxygen atom in the salicylic acid molecule as the proton donor and the carboxyl oxygen atom of the antipyrine molecule as the acceptor.
Resumo:
Gabapentin (1-aminomethylcyclohexaneacetic acid, Gpn) is an achiral, conformationally constrained gamma amino acid residue. A survey of available crystal structures of Gpn peptides reveals that the torsion angles about the C-gamma-C-beta (theta(1)) and C-beta-C-alpha(theta(2)) bonds are overwhelmingly limited to gauche, gauche (g(+)g(+)/g(-)g(-)) conformations. The Gpn residue forms C-7 and C-9 hydrogen bonds in which the donor and acceptor atoms come from the flanking peptide units. In combination with alpha amino acid residues alpha gamma and gamma alpha segments can adopt C-12 hydrogen bonded structures. The conformational choices available to the Gpn residue have been probed using energy calculations, adopting a grid search strategy. Ramachandran phi-psi maps have been constructed for fixed values of theta(1) and theta(2), corresponding to the gauche and trans conformations. The sterically allowed and energetically favorable regions of conformational space have been defined and experimental observations compared. C-7 and C-9 hydrogen bonded conformational families have been identified using a grid search approach in which theta(1) and theta(2) values are varied over a range of +/- 10 degrees about ideal values at 1 degrees intervals. The theoretical analysis together with experimental observations for 59 Gpn residues from 35 crystal structures permits definition of the limited range of conformational possibilities at this gamma amino acid residue. .
Resumo:
We develop a political–economic model of aid fungibility: a part of aid is diverted away from its intended target by lobby groups. The size of this diversion – the degree of aid fungibility – is determined endogenously by the recipient government. The donor can affect the equilibrium degree of fungibility by choosing both the size of aid and the timing of its decision. We derive a condition under which the donor's reaction to fungibility is to reduce the amount of aid. Under this condition, if the donor acts as a follower, both the donor and the target group are better off.
Resumo:
BACKGROUND Negative donation experiences, including vasovagal reactions, deter donor retention. However, whether this deterrence effect varies as a function of whole blood (WB) donation history and requests to donate the same or a different product remains unclear. STUDY DESIGN AND METHODS The responses of 894 eligible WB donors who had been approached to convert to plasmapheresis and 954 eligible first-time plasmapheresis donors who had been surveyed on their last donation experience and their intention to donate plasma were considered. This information was matched with individual vasovagal reaction records, deferral category, WB donation history, and subsequent donation behavioral data obtained from the blood collection agency. RESULTS Path analysis indicated that the application of a deferral and an officially recorded vasovagal reaction decreased donors' intentions to continue plasmapheresis donation, but had no effect on WB donors' intentions to convert to plasmapheresis. Consistent with past findings, vasovagal reactions occurred more frequently with female and inexperienced donors. CONCLUSION Experiencing vasovagal reactions and deferrals may not universally deter donors from continuing to donate. Rather, the offer to convert to another form of donation—in this instance, plasmapheresis—after experiencing a negative donation event while donating WB may be sufficient to eliminate the deterrence effect on retention.
Resumo:
Deviations from the usual R (-6) dependence of the rate of fluorescence resonance energy transfer (FRET) on the distance between the donor and the acceptor have been a common scenario in the recent times. In this paper, we present a critical analysis of the distance dependence of FRET, and try to illustrate the non R (-6) type behaviour of the rate for the case of transfer from a localized electronic excitation on the donor, a dye molecule to three different energy acceptors with delocalized electronic excitations namely, graphene,two-dimensional semiconducting sheet and the case of such a semiconducting sheet rolled to obtain a nanotube. We use simple analytic models to understand the distance dependence in each case.
Resumo:
Because the worldwide demand for sperm donors is much higher than the actual supply available through fertility clinics, an informal online market has emerged for sperm donation. Very little empirical evidence exists, however, on this newly formed market and even less on the characteristics that lead to donor success. This article therefore explores the determinants of online sperm donors’ selection success, which leads to the production of offspring via informal donation. We find that donor age and income play a significant role in donor success as measured by the number of times selected, even though there is no requirement for ongoing paternal investment. Donors with less extroverted and lively personality traits who are more intellectual, shy and systematic are more successful in realizing offspring via informal donation. These results contribute to both the economic literature on human behaviour and on large-scale decision-making.
Resumo:
Anion directed, template syntheses of two dinuclear copper(II) complexes of mono-condensed Schiff base ligand Hdipn (4-[(3-aminopentylimino)-methyl]-benzene-1,3-diol) involving 2,4- dihydroxybenzaldehyde and 1,3-diaminopentane were realized in the presence of bridging azide and acetate anions. Both complexes, [Cu-2(dipn)(2)(N-3)(2)] (1) and [Cu-2(dip(n))(2)(OAc)(2)] (2) have been characterized by X-ray crystallography. The two mononuclear units are joined together by basal-apical, double end-on azido bridges in complex 1 and by basal-apical, double mono-atomic acetate oxygen-bridges in 2. Both complexes form rectangular grid-like supramolecular structures via H-bonds connecting the azide or acetate anion and the p-hydroxy group of 2,4- dihydroxybenzaldehyde. Variable-temperature (300-2 K) magnetic susceptibility measurements reveal that complex 1 has antiferromagnetic coupling (J = -2.10 cm (1)) through the azide bridge while 2 has intra-dimer ferromagnetic coupling through the acetate bridge and inter-dimer antiferromagnetic coupling through H-bonds (J = 2.85 cm (1), J' = -1.08 cm (1)). (C) 2009 Elsevier B. V. All rights reserved.
Resumo:
A nanoscale-sized cage with a trigonal prismatic shape is prepared by coordination-driven self-assembly of a predesigned organometallic Pt-3 acceptor with an organic clip-type ligand. This trigonal prism is fluorescent and undergoes efficient fluorescence quenching by nitroaromatics, which are the chemical signatures of many explosives.
Resumo:
Two acceptor containing polyimides PDI and NDI carrying pyromellitic diimide units and 1,4,5,8-naphthalene tetracarboxy diimide units, respectively, along with hexa(oxyethylene) (EO6) segments as linkers, were prepared from the corresponding dianhydrides and diamines. These polyimides were made to fold by interaction with specifically designed folding agents containing a dialkoxynaphtha-lene (DAN) donor linked to a carboxylic acid group. The alkali-metal counter-ion of the donor carboxylic acid upon complexation with the EO6 segment brings the DAN unit in the right location to induce a charge-transfer complex formation with acceptor units in the polymer backbone. This two-point interaction between the folding agent and the polymer backbone leads to a folding of the polymer chain, which was readily monitored by NMR titrations. The effect of various parameters, such as structures of the folding agent and polymer, and the solvent composition, on the folding propensities of the polymer was studied.
Resumo:
We study the process of electronic excitation energy transfer from a fluorophore to the electronic energy levels of a single-walled carbon nanotube. The matrix element for the energy transfer involves the Coulombic interaction between the transition densities on the donor and the acceptor. In the Foumlrster approach, this is approximated as the interaction between the corresponding transition dipoles. For energy transfer from a dye to a nanotube, one can use the dipole approximation for the dye, but not for the nanotube. We have therefore calculated the rate using an approach that avoids the dipole approximation for the nanotube. We find that for the metallic nanotubes, the rate has an exponential dependence if the energy that is to be transferred, h is less than a threshold and a d(-5) dependence otherwise. The threshold is the minimum energy required for a transition other than the k(i,perpendicular to)=0 and l=0 transition. Our numerical evaluation of the rate of energy transfer from the dye pyrene to a (5,5) carbon nanotube, which is metallic leads to a distance of similar to 165 A degrees up to which energy transfer is appreciable. For the case of transfer to semiconducting carbon nanotubes, apart from the process of transfer to the electronic energy levels within the one electron picture, we also consider the possibility of energy transfer to the lowest possible excitonic state. Transfer to semiconducting carbon nanotubes is possible only if>=epsilon(g)-epsilon(b). The long range behavior of the rate of transfer has been found to have a d(-5) dependence if h >=epsilon(g). But, when the emission energy of the fluorophore is in the range epsilon(g)>h >=epsilon(g)-epsilon(b), the rate has an exponential dependence on the distance. For the case of transfer from pyrene to the semiconducting (6,4) carbon nanotube, energy transfer is found to be appreciable up to a distance of similar to 175 A degrees.
Resumo:
The formation of local structure, in short peptides has been probed by examining cleavage patterns and rates of proteolysis of designed sequences with a high tendency to form β-hairpin structures. Three model sequences which bear fluorescence donor and acceptor groups have been investigated: Dab-Gaba-Lys-Pro-Leu-Gly-Lys-Val-Xxx-Yyy-Glu-Val-Ala-Ala-Cys-Lys-NH2 ï EDANS Xxx-Yyy: Peptide 1=DPro-LPro, Peptide 2=DPro-Gly, Peptide 3=Leu-Ala Fluorescence resonance energy transfer (FRET) provides a convenient probe for peptide cleavage. MALDI mass spectrometry has been used to probe sites of cleavage and CD spectroscopy to access the overall backbone conformation using analog sequences, which lack strongly absorbing donor and acceptor groups. The proteases trypsin, subtilisin, collagenase, elastase, proteinase K and thermolysin were used for proteolysis and the rates of cleavage determined. Peptide 3 is the most susceptible to cleavage by all the enzymes except thermolysin, which cleaves all three peptides at comparable rates. Peptides 1 and 2 are completely resistant to the action of trypsin, suggesting that β-turn formation acts as a deterrent to proteolytic cleavage.
Resumo:
The interaction of iodine with triphenylamine ,tripheny lphosphine, triphenylarsine and triphenystibine has been investigated by electronic spectroscopy. Transformation of the outer charge-transfer complexes to the inner complexes (quarternary salts) has been examined. The relations of the ionization potentials of the donors with the hvc.t have been discussed and various c.t. parameters have been estimated. Hydrogen bonding of these donors with phenol have been reported.