845 resultados para Domestic family model
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In the context of the standard model the quantization of the electric charge occurs only family by family. When we consider the three families together with massless neutrinos the electric charge is not quantized any more. Here we show that a chiral bilepton gauge model based on the gauge group SU(3)C ⊗ SU(3)L ⊗ U(1)N explains the quantization of the electric charge when we take into account the three families of fermions. This result does not depend on the neutrino masses. Charge quantization occurs whether the neutrinos are massless or Dirac or Majorana massive fields.
Resumo:
The influence of a nearest-neighbor Coulomb repulsion of strength V on the properties of the ferromagnetic Kondo model is analyzed using computational techniques. The Hamiltonian studied here is defined on a chain using localized S = 1/2 spins, and one orbital per site. Special emphasis is given to the influence of the Coulomb repulsion on the regions of phase separation recently discovered in this family of models, as well as on the double-exchange-induced ferromagnetic ground state. When phase separation dominates at V= 0, the Coulomb interaction breaks the large domains of the two competing phases into small islands of one phase embedded into the other. This is in agreement with several experimental results, as discussed in the text. Vestiges of the original phase separation regime are found in the spin structure factor as incommensurate peaks, even at large values of V. In the ferromagnetic regime close to density n = 0.5, the Coulomb interaction induces tendencies to charge ordering without altering the fully polarized character of the state. This regime of charge-ordered ferromagnetism may be related with experimental observations of a similar phase by Chen and Cheong [Phys. Rev. Lett. 76, 4042 (1996)]. Our results reinforce the recently introduced notion [see, e.g., S. Yunoki et al., Phys. Rev. Lett. 80, 845 (1998)] that in realistic models for manganites analyzed with unbiased many-body techniques, the ground state properties arise from a competition between ferromagnetism and phase-separation - charge-ordering tendencies. ©1999 The American Physical Society.
Resumo:
In this paper, we consider the propagation of water waves in a long-wave asymptotic regime, when the bottom topography is periodic on a short length scale. We perform a multiscale asymptotic analysis of the full potential theory model and of a family of reduced Boussinesq systems parametrized by a free parameter that is the depth at which the velocity is evaluated. We obtain explicit expressions for the coefficients of the resulting effective Korteweg-de Vries (KdV) equations. We show that it is possible to choose the free parameter of the reduced model so as to match the KdV limits of the full and reduced models. Hence the reduced model is optimal regarding the embedded linear weakly dispersive and weakly nonlinear characteristics of the underlying physical problem, which has a microstructure. We also discuss the impact of the rough bottom on the effective wave propagation. In particular, nonlinearity is enhanced and we can distinguish two regimes depending on the period of the bottom where the dispersion is either enhanced or reduced compared to the flat bottom case. © 2007 The American Physical Society.
Resumo:
Includes bibliography
Resumo:
Background: The delay in development of artificial reproduction techniques on carnivorous could be due to countless reasons, but the lack of commercial interest is probably the most important one. The majority of canines are small structures, canidae are extremely fertile and a great number of species are adapted to domestication or captivity. Finally, the canine gamete physiology presents a difficult adaptation of technology knowledge obtained from other species. Furthermore, domestic felines are animals of company and there is no interest in reproducing them in a large scale, as it has been observed in other domestic animals, however, besides of being a valuable model for the development of in vitro techniques, the domestic cat is also used as an embryo receptor for different species of small wild felines due to physiological similarities among them, in vitro embrionary development, Review: It was reviewed the main insights about the reproductive physiology in female dogs, in vitro oocytary maturation (IVM), pregnancy and conception rate with dogs' frozen/unfrozen semen and PIV in domestic cats. The majority of mammal oocytes restart meiosis spontaneously after ovulation and reaches MII in artificial environment; in an in vitro maturation system in bovines, around 90% of oocytes complete their maturation, although its development capacity can be reduced subsequently. The success of IVM in canidae have been limited, with maturation rate varying from 0 to 58%, usually around 20%. The greatest difficulties include oocyte quality, hormonal environment, protein supplementation, cumulus / oocyte cell interaction, donor breed and age, culture systems, oxygen tension, amino acids, growth factor and sequential means. The freezing process reduces the quality of the semen, firstly because it reduces the number of living sperms and secondly because freezing produces cell modifications that could alter the sperm motility, longevity, integrity of membranes and its fertilizing capacity. Conclusion: Nowadays, several researches are being performed with the aim of increasing viability after dogs' and cats' semen is unfrozen, using extenders, cryoprotectors, freezing and unfreezing curves, addition of antioxidant substances. The aim of this text is to inform about the improvements obtained on the artificial reproduction techniques, emphasizing the oocytary maturation in female dogs, semen cryopreservation and artificial insemination in domestic dogs and cats.
Resumo:
Includes bibliography
Resumo:
Maturity Onset Diabetes of the Young (MODY) is a heterogeneous group of genetic diseases characterized by a primary defect in insulin secretion and hyperglycemia, non-ketotic disease, monogenic autosomal dominant mode of inheritance, age at onset less than 25. years, and lack of auto-antibodies. It accounts for 2-5% of all cases of non-type 1 diabetes. MODY subtype 2 is caused by mutations in the glucokinase (GCK) gene. In this study, we sequenced the GCK gene of two volunteers with clinical diagnosis for MODY2 and we were able to identify four mutations including one for a premature stop codon (c.76C>T). Based on these results, we have developed a specific PCR-RFLP assay to detect this mutation and tested 122 related volunteers from the same family. This mutation in the GCK gene was detected in 21 additional subjects who also had the clinical features of this genetic disease. In conclusion, we identified new GCK gene mutations in a Brazilian family of Italian descendance, with one due to a premature stop codon located in the second exon of the gene. We also developed a specific assay that is fast, cheap and reliable to detect this mutation. Finally, we built a molecular ancestry model based on our results for the migration of individuals carrying this genetic mutation from Northern Italy to Brazil. © 2012 Elsevier B.V.
Resumo:
This paper presents a methodology for modeling high intensity discharge lamps based on artificial neural networks. The methodology provides a model which is able to represent the device operating in the frequency of distribution systems, facing events related to power quality. With the aid of a data acquisition system to monitor the laboratory experiment, and using $$\text{ MATLAB }^{\textregistered }$$ software, data was obtained for the training of two neural networks. These neural networks, working together, were able to represent with high fidelity the behavior of a discharge lamp. The excellent performance obtained by these models allowed the simulation of a group of lamps in a distribution system with shorter simulation time when compared to mathematical models. This fact justified the application of this family of loads in electric power systems. The representation of the device facing power quality disturbances also proved to be a useful tool for more complex studies in distribution systems. © 2013 Brazilian Society for Automatics - SBA.
Resumo:
We consider a family of two-dimensional nonlinear area-preserving mappings that generalize the Chirikov standard map and model a variety of periodically forced systems. The action variable diffuses in increments whose phase is controlled by a negative power of the action and hence effectively uncorrelated for small actions, leading to a chaotic sea in phase space. For larger values of the action the phase space is mixed and contains a family of elliptic islands centered on periodic orbits and invariant Kolmogorov-Arnold-Moser (KAM) curves. The transport of particles along the phase space is considered by starting an ensemble of particles with a very low action and letting them evolve in the phase until they reach a certain height h. For chaotic orbits below the periodic islands, the survival probability for the particles to reach h is characterized by an exponential function, well modeled by the solution of the diffusion equation. On the other hand, when h reaches the position of periodic islands, the diffusion slows markedly. We show that the diffusion coefficient is scaling invariant with respect to the control parameter of the mapping when h reaches the position of the lowest KAM island. © 2013 American Physical Society.
Resumo:
Includes bibliography
Resumo:
Pós-graduação em Psicologia do Desenvolvimento e Aprendizagem - FC
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
Includes bibliography