959 resultados para Dna Double Strand Breaks


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitric oxide ( NO) has been shown to be effective in cancer chemoprevention and therefore drugs that help generate NO would be preferable for combination chemotherapy or solo use. This study shows a new evidence of NO as a mediator of acute leukemia cell death induced by fisetin, a promising chemotherapeutic agent. Fisetin was able to kill THP-1 cells in vivo resulting in tumor shrinkage in the mouse xenograft model. Death induction in vitro was mediated by an increase in NO resulting in double strand DNA breaks and the activation of both the extrinsic and the intrinsic apoptotic pathways. Double strand DNA breaks could be reduced if NO inhibitor was present during fisetin treatment. Fisetin also inhibited the downstream components of the mTORC1 pathway through downregulation of levels of p70 S6 kinase and inducing hypo-phosphorylation of S6 Ri P kinase, eIF4B and eEF2K. NO inhibition restored phosphorylation of downstream effectors of mTORC1 and rescued cells from death. Fisetin induced Ca2+ entry through L-type Ca2+ channels and abrogation of Ca2+ influx reduced caspase activation and cell death. NO increase and increased Ca2+ were independent phenomenon. It was inferred that apoptotic death of acute monocytic leukemia cells was induced by fisetin through increased generation of NO and elevated Ca2+ entry activating the caspase dependent apoptotic pathways. Therefore, manipulation of NO production could be viewed as a potential strategy to increase efficacy of chemotherapy in acute monocytic leukemia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The alkaline comet assay is a method of detecting DNA strand breaks and alkali labile sites in individual cells. The method was used to detect DNA strand breaks in isolated blood cells (leukocytes) of carp (Cyprius carpio). DNA damage have been induced by exposure of the cells to sediment extract. Therefore comet assay can be applied as in vitro bioassay for investigations on toxicity of marine sediments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the cell, the binding of proteins to specific sequences of double helical DNA is essential for controlling the processes of protein synthesis (at the level of DNA transcription) and cell proliferation (at the level of DNA replication). In the laboratory, the sequence-specific DNA binding/cleaving properties of restriction endonuclease enzymes (secreted by microorganisms to protect them from foreign DNA molecules) have helped to fuel a revolution in molecular biology. The strength and specificity of a protein:DNA interaction depend upon structural features inherent to the protein and DNA sequences, but it is now appreciated that these features (and therefore protein:DNA complexation) may be altered (regulated) by other protein:DNA complexes, or by environmental factors such as temperature or the presence of specific organic molecules or inorganic ions. It is also now appreciated that molecules much smaller than proteins (including antibiotics of molecular weight less than 2000 and oligonucleotides) can bind to double-helical DNA in sequence-specific fashion. Elucidation of structural motifs and microscopic interactions responsible for the specific molecular recognition of DNA leads to greater understanding of natural processes and provides a basis for the design of novel sequence-specific DNA binding molecules. This thesis describes the synthesis and DNA binding/cleaving characteristics of molecules designed to probe structural, stereochemical, and environmental factors that regulate sequence-specific DNA recognition.

Chapter One introduces the DNA minor groove binding antibiotics Netropsin and Distamycin A, which are di- and tri(N-methylpyrrolecarboxamide) peptides, respectively. The method of DNA affinity cleaving, which has been employed to determine DNA binding properties of designed synthetic molecules is described. The design and synthesis of a series of Netropsin dimers linked in tail-to-tail fashion (by oxalic, malonic, succinic, or fumaric acid), or in head-to-tail fashion (by glycine, β-alanine, and γ-aminobutanoic acid (Gaba)) are presented. These Bis(Netropsin)s were appended with the iron-chelating functionality EDTA in order to make use of the technique of DNA affinity cleaving. Bis(Netropsin)-EDTA compounds are analogs of penta(N-methylpyrrolecarboxamide)-EDTA (P5E), which may be considered a head-to-tail Netropsin dimer linked by Nmethylpyrrolecarboxamide. Low- and high-resolution analysis of pBR322 DNA affinity cleaving by the iron complexes of these molecules indicated that small changes in the length and nature of the linker had significant effects on DNA binding/cleaving efficiency (a measure of DNA binding affinity). DNA binding/cleaving efficiency was found to decrease with changes in the linker in the order β-alanine > succinamide > fumaramide > N-methylpyrrolecarboxamide > malonamide >glycine, γ-aminobutanamide > oxalamide. In general, the Bis(Netropsin)-EDTA:Fe compounds retained the specificity for seven contiguous A:T base pairs characteristic of P5E:Fe binding. However, Bis(Netropsin)Oxalamide- EDTA:Fe exhibited decreased specificity for A:T base pairs, and Bis(Netropsin)-Gaba-EDT A:Fe exhibited some DNA binding sites of less than seven base pairs. Bis(Netropsin)s linked with diacids have C2-symmmetrical DNA binding subunits and exhibited little DNA binding orientation preference. Bis(Netropsin)s linked with amino acids lack C2-symmetrical DNA binding subunits and exhibited higher orientation preferences. A model for the high DNA binding orientation preferences observed with head-to-tail DNA minor groove binding molecules is presented.

Chapter Two describes the design, synthesis, and DNA binding properties of a series of chiral molecules: Bis(Netropsin)-EDTA compounds with linkers derived from (R,R)-, (S,S)-, and (RS,SR)-tartaric acids, (R,R)-, (S,S)-, and (RS,SR)-tartaric acid acetonides, (R)- and (S)-malic acids, N ,N-dimethylaminoaspartic acid, and (R)- and (S)-alanine, as well as three constitutional isomers in which an N-methylpyrrolecarboxamide (P1) subunit and a tri(N-methylpyrrolecarboxamide)-EDTA (P3-EDTA) subunit were linked by succinic acid, (R ,R)-, and (S ,S)-tartaric acids. DNA binding/cleaving efficiencies among this series of molecules and the Bis(Netropsin)s described in Chapter One were found to decrease with changes in the linker in the order β-alanine > succinamide > P1-succinamide-P3 > fumaramide > (S)-malicamide > N-methylpyrrolecarboxamide > (R)-malicamide > malonamide > N ,N-dimethylaminoaspanamide > glycine = Gaba = (S,S)-tartaramide = P1-(S,S)-tanaramide-P3 > oxalamide > (RS,SR)-tartaramide = P1- (R,R)-tanaramide-P3 > (R,R)-tartaramide (no sequence-specific DNA binding was detected for Bis(Netropsin)s linked by (R)- or (S)-alanine or by tartaric acid acetonides). The chiral molecules retained DNA binding specificity for seven contiguous A:T base pairs. From the DNA affinity cleaving data it could be determined that: 1) Addition of one or two substituents to the linker of Bis(Netropsin)-Succinamide resulted in stepwise decreases in DNA binding affinity; 2) molecules with single hydroxyl substituents bound DNA more strongly than molecules with single dimethylamino substituents; 3) hydroxyl-substituted molecules of (S) configuration bound more strongly to DNA than molecules of (R) configuration. This stereochemical regulation of DNA binding is proposed to arise from the inherent right-handed twist of (S)-enantiomeric Bis(Netropsin)s versus the inherent lefthanded twist of (R)-enantiomeric Bis(Netropsin)s, which makes the (S)-enantiomers more complementary to the right-handed twist of B form DNA.

Chapter Three describes the design and synthesis of molecules for the study of metalloregulated DNA binding phenomena. Among a series of Bis(Netropsin)-EDTA compounds linked by homologous tethers bearing four, five, or six oxygen atoms, the Bis(Netropsin) linked by a pentaether tether exhibited strongly enhanced DNA binding/cleaving in the presence of strontium or barium cations. The observed metallospecificity was consistent with the known affinities of metal cations for the cyclic hexaether 18-crown-6 in water. High-resolution DNA affinity cleaving analysis indicated that DNA binding by this molecule in the presence of strontium or barium was not only stronger but of different sequence-specificity than the (weak) binding observed in the absence of metal cations. The metalloregulated binding sites were consistent with A:T binding by the Netropsin subunits and G:C binding by a strontium or barium:pentaether complex. A model for the observed positive metalloregulation and novel sequence-specificity is presented. The effects of 44 different cations on DNA affinity cleaving by P5E:Fe were examined. A series of Bis(Netropsin)-EDTA compounds linked by tethers bearing two, three, four, or five amino groups was also synthesized. These molecules exhibited strong and specific binding to A:T rich regions of DNA. It was found that the iron complexes of these molecules bound and cleaved DNA most efficiently at pH 6.0-6.5, while P5E:Fe bound and cleaved most efficiently at pH 7.5-8.0. Incubating the Bis(Netropsin) Polyamine-EDTA:Fe molecules with K2PdCl4 abolished their DNA binding/cleaving activity. It is proposed that the observed negative metalloregulation arises from kinetically inert Bis(Netropsin) Polyamine:Pd(II) complexes or aggregates, which are sterically unsuitable for DNA complexation. Finally, attempts to produce a synthetic metalloregulated DNA binding protein are described. For this study, five derivatives of a synthetic 52 amino acid residue DNA binding/cleaving protein were produced. The synthetic mutant proteins carried a novel pentaether ionophoric amino acid residue at different positions within the primary sequence. The proteins did not exhibit significant DNA binding/cleaving activity, but they served to illustrate the potential for introducing novel amino acid residues within DNA binding protein sequences, and for the development of the tricyclohexyl ester of EDTA as a superior reagent for the introduction of EDT A into synthetic proteins.

Chapter Four describes the discovery and characterization of a new DNA binding/cleaving agent, [SalenMn(III)]OAc. This metal complex produces single- and double-strand cleavage of DNA, with specificity for A:T rich regions, in the presence of oxygen atom donors such as iodosyl benzene, hydrogen peroxide, or peracids. Maximal cleavage by [SalenMn(III)]OAc was produced at pH 6-7. A comparison of DNA singleand double-strand cleavage by [SalenMn(III)]+ and other small molecules (Methidiumpropyl-EDTA:Fe, Distamycin-EDTA:Fe, Neocarzinostatin, Bleomycin:Fe) is presented. It was found that DNA cleavage by [SalenMn(III)]+ did not require the presence of dioxygen, and that base treatment of DNA subsequent to cleavage by [SalenMn(III)]+ afforded greater cleavage and alterations in the cleavage patterns. Analysis of DNA products formed upon DNA cleavage by [SalenMn(III)] indicated that cleavage was due to oxidation of the sugar-phosphate backbone of DNA. Several mechanisms consistent with the observed products and reaction requirements are discussed.

Chapter Five describes progress on some additional studies. In one study, the DNA binding/cleaving specificities of Distamycin-EDTA derivatives bearing pyrrole N-isopropyl substituents were found to be the same as those of derivatives bearing pyrrole N-methyl substituents. In a second study, the design of and synthetic progress towards a series of nucleopeptide activators of transcription are presented. Five synthetic plasmids designed to test for activation of in vitro run-off transcription by DNA triple helix-forming oligonucleotides or nucleopeptides are described.

Chapter Six contains the experimental documentation of the thesis work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Os tumores de mama são caracterizados pela sua alta heterogeneidade. O câncer de mama é uma doença complexa, que possui o seu desenvolvimento fortemente influenciado por fatores ambientais, combinada a uma progressiva acumulação de mutações genéticas e desregulação epigenética de vias críticas. Alterações nos padrões de expressão gênica podem ser resultado de uma desregulação no controle de eventos epigenéticos, assim como, na regulação pós-transcricional pelo mecanismo de RNA de interferência endógeno via microRNA (miRNA). Estes eventos são capazes de levar à iniciação, à promoção e à manutenção da carcinogênese, como também ter implicações no desenvolvimento da resistência à terapia Os miRNAs formam uma classe de RNAs não codificantes, que durante os últimos anos surgiram como um dos principais reguladores da expressão gênica, através da sua capacidade de regular negativamente a atividade de RNAs mensageiros (RNAms) portadores de uma seqüencia parcialmente complementar. A importância da regulação mediada por miRNAs foi observada pela capacidade destas moléculas em regular uma vasta gama de processos biológicos incluindo a proliferação celular, diferenciação e a apoptose. Para avaliar a expressão de miRNAs durante a progressão tumoral, utilizamos como modelo experimental a série 21T que compreende 5 linhagens celulares originárias da mesma paciente diagnosticada com um tumor primário de mama do tipo ErbB2 e uma posterior metástase pulmonar. Essa série é composta pela linhagem obtida a partir do tecido normal 16N, pelas linhagens correspondentes ao carcinoma primário 21PT e 21NT e pelas linhagens obtidas um ano após o diagnóstico inicial, a partir da efusão pleural no sítio metastatico 21MT1 e 21MT2. O miRNAoma da série 21T revelou uma redução significativa nos níveis de miR-205 e nos níveis da proteina e-caderina e um enriquecimento do fator pró-metastático ZEB-1 nas células 21MT. Considerando a importância dos miRNAs na regulação da apoptose, e que a irradiação em diferentes espectros é comumente usada em procedimentos de diagnóstico como mamografia e na radioterapia, avaliamos a expressão de miRNAs após irradiação de alta e baixa energia e do tratamento doxorrubicina. Para os ensaios foram utilizados as linhagens não tumorais MCF-10A e HB-2 e as linhagens de carcinoma da mama MCF-7 e T-47D. Observou-se que raios-X de baixa energia são capazes de promover quebras na molécula do DNA e apoptose assim como, alterar sensivelmente miRNAs envolvidos nessas vias como o let-7a, miR-34a e miR-29b. No que diz respeito à resposta a danos genotóxicos, uma regulação positiva sobre a expressão de miR-29b, o qual em condições normais é regulado negativamente foi observada uma regulação positiva sobre miR-29b expressão após todos os tratamentos em células tumorais. Nossos resultados indicam que miR-29b é um possível biomarcador de estresse genotóxico e que miR-205 pode participar no potencial metastático das células 21T.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Ru(bpy)(3)(2+)-doped silica nanoparticle-[Ru@Silica] modified indium tin oxide electrode was prepared by simple electrostatic self-assembly technique, and one-electron catalytic oxidation of guanine bases in double-strand and denatured DNA was realized using the electrochemiluminescence detection means.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The conformational transition of DNA induced by the interaction between DNA and a cationic lipid vesicle, didodecyidimethylammonium bromide (DDAB), had been investigated by circular dichroism (CD) and UV spectroscopy methods. We used singular value decomposition least squares method (SVDLS) to analyze the experimental CD spectra. Although pH value influenced the conformation of DNA in solution, the results showed that upon binding to double helical DNA, positively charged liposomes induced a conformational transition of DNA molecules from the native B-form to more compact conformations. At the same time, no obvious conformational changes occurred at single-strand DNA (ssDNA). While the cationic lipid vesicles and double-strand DNA (dsDNA) were mixed at a high molar ratio of DDAB vesicles to dsDNA, the conformation of dsDNA transformed from the B-form to the C-form resulting in an increase in duplex stability (DeltaT(m) = 8 +/- 0.4 degreesC). An increasing in T-m was also observed while the cationic lipid vesicles interacted with ssDNA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ataxia telangiectasia mutant (ATM) is an S/T-Q-directed kinase that is critical for the cellular response to double-stranded breaks (DSBs) in DNA. Following DNA damage, ATM is activated and recruited by the MRN protein complex [meiotic recombination 11 (Mre11)/DNA repair protein Rad50/Nijmegen breakage syndrome 1 proteins] to sites of DNA damage where ATM phosphorylates multiple substrates to trigger cell-cycle arrest. In cancer cells, this regulation may be faulty, and cell division may proceed even in the presence of damaged DNA. We show here that the ribosomal s6 kinase (Rsk), often elevated in cancers, can suppress DSB-induced ATM activation in both Xenopus egg extracts and human tumor cell lines. In analyzing each step in ATM activation, we have found that Rsk targets loading of MRN complex components onto DNA at DSB sites. Rsk can phosphorylate the Mre11 protein directly at S676 both in vitro and in intact cells and thereby can inhibit the binding of Mre11 to DNA with DSBs. Accordingly, mutation of S676 to Ala can reverse inhibition of the response to DSBs by Rsk. Collectively, these data point to Mre11 as an important locus of Rsk-mediated checkpoint inhibition acting upstream of ATM activation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The damage induced in supercoiled plasmid DNA molecules by low energy (< 1 keV u-1) singly and doubly charged carbon ions has been investigated as a function of ion exposure. The production of short linear fragments through multiple double strand breakage is indicated and exponential exposure responses for each of the topoisomers are presented. The damage produced by C2+ is apparent at much lower ion exposures that with C+.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BRCA1 (breast-cancer susceptibility gene 1) is a tumour suppressor gene that is mutated in the germline of women with a genetic predisposition to breast and ovarian cancer. In this review, we examine the role played by BRCA1 in mediating the cellular response to stress. We review the role played by BRCA1 in detecting and signalling the presence of DNA damage, particularly double-strand DNA breaks, and look at the evidence to support a role for BRCA1 in regulating stress response pathways such as the c-Jun N-terminal kinase/stress-activated protein kinase pathway. in addition, we examine the role played by BRCA1 in mediating both cell-cycle arrest and apoptosis following different types of cellular insult, and how this may be modulated by the presence or absence of associated proteins such as p53. Finally, we explore the possibility that many of the functions associated with BRCA1 may be based on transcriptional regulation of key downstream genes that have been implicated in the regulation of these specific cellular pathways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The radiation-induced bystander effect challenges the accepted paradigm of direct DNA damage in response to energy deposition driving the biological consequences of radiation exposure. With the bystander response, cells which have not been directly exposed to radiation respond to their neighbours being targeted. In our own studies we have used novel targeted microbeam approaches to specifically irradiate parts of individual cells within a population to quantify the bystander response and obtain mechanistic information. Using this approach it has become clear that energy deposited by radiation in nuclear DNA is not required to trigger the effect, with cytoplasmic irradiation required. Irradiated cells also trigger a bystander response regardless of whether they themselves live or die, suggesting that the phenotype of the targeted cell is not a determining factor. Despite this however, a range of evidence has shown that repair status is important for dealing with the consequences of a bystander signal. Importantly, repair processes involved in the processing of dsb appear to be involved suggesting that the bystander response involves the delayed or indirect production of dsb-type lesions in bystander cells. Whether these are infact true dsb or complexes of oxidised bases in combination with strand breaks and the mechanisms for their formation, remains to be elucidated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The comet assay is a sensitive tool for estimation of DNA damage and repair at the cellular level, requiring only a very small number of cells. In comparing the levels of damage or repair in different cell samples, it is possible that small experimental effects could be confounded by different cell cycle states in the samples examined, if sensitivity to DNA damage, and repair capacity, varies with the cell cycle. We assessed this by arresting HeLa cells in various cell cycle stages and then exposing them to ionizing radiation. Unirradiated cells demonstrated significant differences in strand break levels measured by the comet assay (predominantly single-strand breaks) at different cell cycle stages, increasing from G1 into S and falling again in G2. Over and above this variation in endogenous strand break levels, a significant difference in susceptibility to breaks induced by 3.5 Gy ionizing radiation was also evident in different cell cycle phases. Levels of induced DNA damage fluctuate throughout the cycle, with cells in G1 showing slightly lower levels of damage than an asynchronous population. Damage increases as cells progress through S phase before falling again towards the end of S phase and reaching lowest levels in M phase. The results from repair experiments (where cells were allowed to repair for 10 min after exposure to ionizing radiation) also showed differences throughout the cell cycle with G1-phase cells apparently being the most efficient at repair and M-phase cells the least efficient. We suggest, therefore, that in experiments where small differences in DNA damage and repair are to be investigated with the comet assay, it may be desirable to arrest cells in a specific stage of the cell cycle or to allow for differential cycle distribution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Sperm DNA damage shows great promise as a biomarker of infertility. The study aim is to determine the usefulness of DNA fragmentation (DF), including modified bases (MB), to predict assisted reproduction treatment (ART) outcomes. Methods: DF in 360 couples (230 IVF and 130 ICSI) was measured by the alkaline Comet assay in semen and in sperm following density gradient centrifugation (DGC) and compared with fertilization rate (FR), embryo cumulative scores (ECS1) for the total number of embryos/treatment, embryos transferred (ECS2), clinical pregnancy (CP) and spontaneous pregnancy loss. MB were also measured using formamidopyrimidine DNA glycosylase to convert them into strand breaks. Results: In IVF, FR and ECS decreased as DF increased in both semen and DGC sperm, and couples who failed to achieve a CP had higher DF than successful couples (+12.2 semen, P = 0.004; +9.9 DGC sperm, P = 0.010). When MB were added to existing strand breaks, total DF was markedly higher (+17.1 semen, P = 0.009 and +13.8 DGC sperm, P = 0.045). DF was not associated with FR, ECS or CP in either semen or DGC sperm following ISCI. In contrast, by including MB, there was significantly more DNA damage (+16.8 semen, P = 0.008 and +15.5 DGC sperm, P = 0.024) in the group who did not achieve CP. Conclusion: SDF can predict ART outcome for IVF. Converting MB into further DNA strand breaks increased the test sensitivity, giving negative correlations between DF and CP for ICSI as well as IVF. © 2010 The Author.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antioxidant species may act in vivo to decrease oxidative damage to DNA, protein and lipids thus reducing the risk of coronary heart disease and cancer. Phytoestrogens are plant compounds which are a major component of traditional Asian diets and which may be protective against certain hormone-dependent cancers (breast and prostate) and against coronary heart disease. They may also be able to function as antioxidants, scavenging potentially harmful free radicals. In this study, the effects of the isoflavonoids (a class of phytoestrogen) genistein and equol on hydrogen peroxide-mediated DNA damage in human lymphocytes were determined using alkaline single-cell gel electrophoresis (the comet assay). Treatment with hydrogen peroxide significantly increased the levels of DNA strand breaks. Pre-treatment of the cells with both genistein and equol offered protection against this damage at concentrations within the physiological range. This protection was greater than that offered by addition of the known antioxidant vitamins ascorbic acid and alpha -tocopherol, or the compounds 17 beta -oestradiol and Tamoxifen which have similar structures to isoflavonoids and are known to have weak antioxidant properties. These findings are consistent with the hypothesis that phytoestrogens can, under certain conditions, function as antioxidants and protect against oxidatively-induced DNA damage. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using first-principles molecular dynamics simulations, we have investigated the notion that amino acids can play a protective role when DNA is exposed to excess electrons produced by ionizing radiation. In this study we focus on the interaction of glycine with the DNA nucleobase thymine. We studied thymine-glycine dimers and a condensed phase model consisting of one thymine molecule solvated in amorphous glycine. Our results show that the amino acid acts as a protective agent for the nucleobase in two ways. If the excess electron is initially captured by the thymine, then a proton is transferred in a barrier-less way from a neighboring hydrogen-bonded glycine. This stabilizes the excess electron by reducing the net partial charge on the thymine. In the second mechanism the excess electron is captured by a glycine, which acts as a electron scavenger that prevents electron localization in DNA. Both these mechanisms introduce obstacles to further reactions of the excess electron within a DNA strand, e.g. by raising the free energy barrier associated with strand breaks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nature and kinetics of plasmid DNA damage after DNA exposure to a kHz-driven atmospheric pressure nonthermal plasma jet has been investigated. Both single-strand break (SSB) and double-strand break (DSB) processes are reported here. While SSB had a higher rate constant, DSB is recognized to be more significant in living systems, often resulting in loss of viability. In a helium-operated plasma jet, adding oxygen to the feed gas resulted in higher rates of DNA DSB, which increased linearly with increasing oxygen content, up to an optimum level of 0.75% oxygen, after which the DSB rate decreased slightly, indicating an essential role for reactive oxygen species in the rapid degradation of DNA.