898 resultados para Digital Object Identifier (DOI)
Resumo:
This paper explores the relationship between discourse and action in practices involved in making and consuming texts. Texts are produced through the process of ‘entextualization’ in which strips of action and discourse are extracted from their original contexts and recontextualized into other situations. Different technologies for turning actions into texts affect the kinds of social actions and social identities that are made possible both at moments of entextualization and at future moments of recontextualization. In particular, I focus on how digital technologies affect the practices and participation structures around entextualization. Digital photography and video have had a profound effect on social practices and relationships around the making of texts. Specifically, they have made processes of entextualization more immediate, more contingent and more communal. Implications of these features of digital text making are discussed in light of previous work on literacy and orality.
Resumo:
For the last few years, I have been working on an extensive digital model of ancient Rome as it appeared in the early 4th Century AD. This sort of visualisation lends itself to many applications in diverse fields: I am currently using it for research work into illumination and sightlines in the ancient city, have licensed it for broadcast in TV documentaries and publication in magazines, and am working with a computer games studio to turn it into an online game where players will be able to walk round the streets and buildings of the entire city (when not engaged in trading with or assassinating one another). Later this year I will be making a free online course, or MOOC, about the architecture of ancient Rome, which will largely be illustrated by this model.
Resumo:
This study compared splinted and non-splinted implant-supported prosthesis with and without a distal proximal contact using a digital image correlation method. An epoxy resin model was made with acrylic resin replicas of a mandibular first premolar and second molar and with threaded implants replacing the second premolar and first molar. Splinted and non-splinted metal-ceramic screw-retained crowns were fabricated and loaded with and without the presence of the second molar. A single-camera measuring system was used to record the in-plane deformation on the model surface at a frequency of 1.0 Hz under a load from 0 to 250 N. The images were then analyzed with specialist software to determine the direct (horizontal) and shear strains along the model. Not splinting the crowns resulted in higher stress transfer to the supporting implants when the second molar replica was absent. The presence of a second molar and an effective interproximal contact contributed to lower stress transfer to the supporting structures even for non-splinted restorations. Shear strains were higher in the region between the molars when the second molar was absent, regardless of splinting. The opposite was found for the region between the implants, which had higher shear strain values when the second molar was present. When an effective distal contact is absent, non-splinted implant-supported restorations introduce higher direct strains to the supporting structures under loading. Shear strains appear to be dependent also on the region within the model, with different regions showing different trends in strain changes in the absence of an effective distal contact. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The purpose of this study was to evaluate the accuracy of electronic apex locators Digital Signal Processing (DSP) and ProPex, for root canal length determination in primary teeth. Fifteen primary molars (a total of 34 root canals) were divided into two groups: Group I - without physiological resorption (n = 16); and Group II - with physiological resorption (n = 18). The length of each canal was measured by introducing a file until its tip was visible and then it was retracted 1 mm. For electronic measurement, the devices were set to 1 mm short of the apical resorption. The data were analysed statistically using the intraclass correlation coefficient (ICC). Results showed that the ICC was high for both electronic apex locators in all situations - with (ICC: DSP = 0.82 and Propex = 0.89) or without resorption (ICC: DSP = 0.92 and Propex = 0.90). Both apex locators were extremely accurate in determining the working length in primary teeth, both with or without physiological resorption.
Resumo:
The classification of galaxies as star forming or active is generally done in the ([O III]/H beta, [N II]/H alpha) plane. The Sloan Digital Sky Survey (SDSS) has revealed that, in this plane, the distribution of galaxies looks like the two wings of a seagull. Galaxies in the right wing are referred to as Seyfert/LINERs, leading to the idea that non-stellar activity in galaxies is a very common phenomenon. Here, we argue that a large fraction of the systems in the right wing could actually be galaxies which stopped forming stars. The ionization in these `retired` galaxies would be produced by hot post-asymptotic giant branch stars and white dwarfs. Our argumentation is based on a stellar population analysis of the galaxies via our STARLIGHT code and on photoionization models using the Lyman continuum radiation predicted for this population. The proportion of LINER galaxies that can be explained in such a way is, however, uncertain. We further show how observational selection effects account for the shape of the right wing. Our study suggests that nuclear activity may not be as common as thought. If retired galaxies do explain a large part of the seagull`s right wing, some of the work concerning nuclear activity in galaxies, as inferred from SDSS data, will have to be revised.
Resumo:
We explore the prospects of predicting emission-line features present in galaxy spectra given broad-band photometry alone. There is a general consent that colours, and spectral features, most notably the 4000 angstrom break, can predict many properties of galaxies, including star formation rates and hence they could infer some of the line properties. We argue that these techniques have great prospects in helping us understand line emission in extragalactic objects and might speed up future galaxy redshift surveys if they are to target emission-line objects only. We use two independent methods, Artificial Neural Networks (based on the ANNz code) and Locally Weighted Regression (LWR), to retrieve correlations present in the colour N-dimensional space and to predict the equivalent widths present in the corresponding spectra. We also investigate how well it is possible to separate galaxies with and without lines from broad-band photometry only. We find, unsurprisingly, that recombination lines can be well predicted by galaxy colours. However, among collisional lines some can and some cannot be predicted well from galaxy colours alone, without any further redshift information. We also use our techniques to estimate how much information contained in spectral diagnostic diagrams can be recovered from broad-band photometry alone. We find that it is possible to classify active galactic nuclei and star formation objects relatively well using colours only. We suggest that this technique could be used to considerably improve redshift surveys such as the upcoming Fibre Multi Object Spectrograph (FMOS) survey and the planned Wide Field Multi Object Spectrograph (WFMOS) survey.
Resumo:
We present a catalogue of galaxy photometric redshifts and k-corrections for the Sloan Digital Sky Survey Data Release 7 (SDSS-DR7), available on the World Wide Web. The photometric redshifts were estimated with an artificial neural network using five ugriz bands, concentration indices and Petrosian radii in the g and r bands. We have explored our redshift estimates with different training sets, thus concluding that the best choice for improving redshift accuracy comprises the main galaxy sample (MGS), the luminous red galaxies and the galaxies of active galactic nuclei covering the redshift range 0 < z < 0.3. For the MGS, the photometric redshift estimates agree with the spectroscopic values within rms = 0.0227. The distribution of photometric redshifts derived in the range 0 < z(phot) < 0.6 agrees well with the model predictions. k-corrections were derived by calibration of the k-correct_v4.2 code results for the MGS with the reference-frame (z = 0.1) (g - r) colours. We adopt a linear dependence of k-corrections on redshift and (g - r) colours that provide suitable distributions of luminosity and colours for galaxies up to redshift z(phot) = 0.6 comparable to the results in the literature. Thus, our k-correction estimate procedure is a powerful, low computational time algorithm capable of reproducing suitable results that can be used for testing galaxy properties at intermediate redshifts using the large SDSS data base.
Resumo:
A novel mathematical framework inspired on Morse Theory for topological triangle characterization in 2D meshes is introduced that is useful for applications involving the creation of mesh models of objects whose geometry is not known a priori. The framework guarantees a precise control of topological changes introduced as a result of triangle insertion/removal operations and enables the definition of intuitive high-level operators for managing the mesh while keeping its topological integrity. An application is described in the implementation of an innovative approach for the detection of 2D objects from images that integrates the topological control enabled by geometric modeling with traditional image processing techniques. (C) 2008 Published by Elsevier B.V.
Resumo:
Object selection refers to the mechanism of extracting objects of interest while ignoring other objects and background in a given visual scene. It is a fundamental issue for many computer vision and image analysis techniques and it is still a challenging task to artificial Visual systems. Chaotic phase synchronization takes place in cases involving almost identical dynamical systems and it means that the phase difference between the systems is kept bounded over the time, while their amplitudes remain chaotic and may be uncorrelated. Instead of complete synchronization, phase synchronization is believed to be a mechanism for neural integration in brain. In this paper, an object selection model is proposed. Oscillators in the network representing the salient object in a given scene are phase synchronized, while no phase synchronization occurs for background objects. In this way, the salient object can be extracted. In this model, a shift mechanism is also introduced to change attention from one object to another. Computer simulations show that the model produces some results similar to those observed in natural vision systems.
Resumo:
This paper presents a study of AISI 1040 steel corrosion in aqueous electrolyte of acetic acid buffer containing 3.1 and 31 x 10(-3) mol dm(-3) of Na(2)S in both the presence and absence of 3.5 wt.% NaCl. This investigation of steel corrosion was carried out using potential polarization, and open-circuit and in situ optical microscopy. The morphological analysis and classification of types of surface corrosion damage by digital image processing reveals grain boundary corrosion and shows a non-uniform sulfide film growth, which occurs preferentially over pearlitic grains through successive formation and dissolution of the film. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The issue of how children learn the meaning of words is fundamental to developmental psychology. The recent attempts to develop or evolve efficient communication protocols among interacting robots or Virtual agents have brought that issue to a central place in more applied research fields, such as computational linguistics and neural networks, as well. An attractive approach to learning an object-word mapping is the so-called cross-situational learning. This learning scenario is based on the intuitive notion that a learner can determine the meaning of a word by finding something in common across all observed uses of that word. Here we show how the deterministic Neural Modeling Fields (NMF) categorization mechanism can be used by the learner as an efficient algorithm to infer the correct object-word mapping. To achieve that we first reduce the original on-line learning problem to a batch learning problem where the inputs to the NMF mechanism are all possible object-word associations that Could be inferred from the cross-situational learning scenario. Since many of those associations are incorrect, they are considered as clutter or noise and discarded automatically by a clutter detector model included in our NMF implementation. With these two key ingredients - batch learning and clutter detection - the NMF mechanism was capable to infer perfectly the correct object-word mapping. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Given a fixed set of identical or different-sized circular items, the problem we deal with consists on finding the smallest object within which the items can be packed. Circular, triangular, squared, rectangular and also strip objects are considered. Moreover, 2D and 3D problems are treated. Twice-differentiable models for all these problems are presented. A strategy to reduce the complexity of evaluating the models is employed and, as a consequence, instances with a large number of items can be considered. Numerical experiments show the flexibility and reliability of the new unified approach. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The demands of image processing related systems are robustness, high recognition rates, capability to handle incomplete digital information, and magnanimous flexibility in capturing shape of an object in an image. It is exactly here that, the role of convex hulls comes to play. The objective of this paper is twofold. First, we summarize the state of the art in computational convex hull development for researchers interested in using convex hull image processing to build their intuition, or generate nontrivial models. Secondly, we present several applications involving convex hulls in image processing related tasks. By this, we have striven to show researchers the rich and varied set of applications they can contribute to. This paper also makes a humble effort to enthuse prospective researchers in this area. We hope that the resulting awareness will result in new advances for specific image recognition applications.
Resumo:
O objetivo dessa dissertação é analisar a memória de seis ex-prisioneiros políticos do Destacamento de Operações de Informações-Centro de Operações de Defesa Interna do Rio de Janeiro (DOI-CODI/RJ), entrevistados recentemente, entre os anos de 2002 e 2004, sobre o cotidiano vivido nessa instituição em 1970. Naquele ano, dentro do Sistema de Segurança Interna (SISSEGIN), os DOI-CODI haviam sido criados e distribuídos por todas as Regiões Militares do país, tornando-se a principal instituição de repressão aos opositores políticos que optaram pela luta armada como forma de derrotar a ditadura militar brasileira. Assim, as narrativas desses seis ex-prisioneiros são, além de fontes essenciais, o principal objeto de estudo deste trabalho. Através delas, torna-se possível acessar aspectos cruciais para a caracterização do cotidiano vivido pelos presos em um desses órgãos, ― o DOI-CODI do Rio de Janeiro ―, uma vez que esse passado se liga ao presente por meio de suas memórias. Diante disso, a fim de melhor entender tais memórias, a formação e a atuação dos DOI-CODI também são aqui analisadas, colocando as narrativas dos ex-prisioneiros políticos entrevistados em diálogo com uma bibliografia especialmente selecionada, além de uma fonte a respeito do DOI feita por um de seus agentes quando este órgão ainda estava em atividade, em 1978. Para que a essas memórias seja aplicada uma crítica efetiva, necessária a todo trabalho histórico, o estudo se debruça ainda sobre as interferências que o presente exerce na construção que fazem com relação ao passado vivido no DOI-CODI/RJ, com o objetivo de esclarecer as bases sobre as quais são construídas cerca de trinta anos depois.