975 resultados para Different temperatures
Resumo:
本文主要研究了从造纸厂碱性土壤中筛选得到的,能够产生耐碱木聚糖酶的两株放线菌X24-14和X15-17。通过16 S rRNA基因序列分析并结合菌株的形态特征以及生理生化特性,初步认为菌株X15-17为拟诺卡氏菌属(Nocardiopsis)的一个潜在新种;菌株X24-14为纤维化纤维菌(Cellulosimicrobium cellulans)。 在此基础上探索了菌株X24-14和菌株X15-17所产木聚糖酶的基本酶学性质。研究发现,两株菌所产的木聚糖酶的耐碱性均较强: 1)菌株X24-14所产的木聚糖酶,在pH 4.2~9.4的范围内能维持较高的活力,pH 9.4条件下,仍能保持80%的酶活力;2)菌株X15-17所产的木聚糖酶在pH 4.0~9.0的范围内能维持较高的活力,pH 9.0条件下,仍能保持80%的酶活力;3)两株菌所产的木聚糖酶均具有较好的pH稳定性,在pH 2.0~11.0范围内稳定,pH 11.0、4 ℃条件下处理24 h仍具有75%的活力。 本文还重点研究了菌株X24-14在不同培养基成分及不同培养条件下的产酶情况,确定了其适宜的产酶条件。结果显示,菌株X24-14的最适碳源为麸皮;最适氮源为蛋白胨;最适产酶pH为pH 8.5。菌株X24-14适宜的产酶条件为:麸皮60 g/L,蛋白胨10 g/L,K2HPO4 7.0 g/L,pH 8.5,接种量为5%,37 ℃,200 r/min发酵培养108 h。 Two strains of actinomycetes, X24-14 and X15-17, which produced alkali-tolerant xylanase were screened from the soil samples collected from a pulp mill in china. Based on the morphological, physiochemical characteristics and 16S rRNA sequence, X24-14 was priminarily identified as cellulosimicrobium cellulans ; X15-17 was priminarily identified as a new species of Nocardiopsis. The investigation examined the enzyme activities which produced by X24-14 and X15-17 under different pH and different temperatures. The results showed that : 1)The xylanase from X24-14 had characteristic of alkali-tolerance: It remains 80% relative activity at pH ranges between pH 4.2 and pH 9.4 under 50℃. 2)The xylanase from X15-17 also showed characteristic of alkali-tolerance, it remains 80% relative activity at pH ranges between pH 4.0and pH 9.0 under 50℃. 3)The xylanase from the two strains showed alkali-stable characteristics. They were stable at pH ranges between pH 2.0 and pH 11.0, showing 75% of its maximal activity remaining under 24 hours of treatment at 4℃. We also studied the effect of different growth conditions: carbon source, nitrogen sources, inoculum size, and initial pH on the production of xylanase of strain X24-14. The results showed that :The optimal carbon source was wheat bran; The optima nitrogen source was peptone; The maximum xylanase activity was achieved in the medium containing 60 g/L wheat bran, 10 g/L peptone, 7 g/L K2HPO4, inoculum size 5% and pH 8.5, under 37℃ in 108 h.
Resumo:
6H-SiC single crystal specimens were implanted at 600 K with 100 KeV He ions to three successively increasing fluences and subsequently annealed at different temperatures ranging from 600℃ to 1200℃ in vacuum.After the annealing,the samples were investigated by using Raman scattering spectroscopy and photoluminescence spectrometry,respectively.Both of the two methods showed that the damage induced by helium-ion-implantation in the lattice is closely related to the dose.The thermal annealing brings about reco...中文摘要:对氦(He)离子高温(600K)注入6H-SiC中的辐照缺陷,在阶梯温度退火后演化行为的拉曼光谱和室温光致发光谱的特征进行了分析.这两种方法的实验结果表明,离子注入所产生晶格损伤的程度与注入剂量有关;高温退火导致损伤的恢复,不同注入剂量造成的晶格损伤需要不同的退火温度才可恢复.在阶梯温度退火下呈现出了点缺陷的复合、氦-空位团的产生、氦泡的形核、长大等特性.研究表明:高温(600K)注入在一定剂量范围内是避免注入层非晶化的一个重要方法,为后续利用氦离子注入空腔掩埋层吸杂或者制备低成本、低缺陷密度的绝缘层上碳化硅(SiCOI)材料提供了可能.
Resumo:
对氦(He)离子高温(600K)注入6H-SiC中的辐照缺陷,在阶梯温度退火后演化行为的拉曼光谱和室温光致发光谱的特征进行了分析.这两种方法的实验结果表明,离子注入所产生晶格损伤的程度与注入剂量有关;高温退火导致损伤的恢复,不同注入剂量造成的晶格损伤需要不同的退火温度才可恢复.在阶梯温度退火下呈现出了点缺陷的复合、氦-空位团的产生、氦泡的形核、长大等特性.研究表明:高温(600K)注入在一定剂量范围内是避免注入层非晶化的一个重要方法,为后续利用氦离子注入空腔掩埋层吸杂或者制备低成本、低缺陷密度的绝缘层上碳化硅(SiCOI)材料提供了可能.
Resumo:
Single-crystalline spinel (MgAl2O4) specimens were implanted with helium ions of 100 keV at three successively increasing fluences of (0.5, 2.0 and 8.0) x 10(16) ions/cm(2) at room temperature. The specimens were subsequently annealed in vacuum at different temperatures ranging from 500 to 1100 degrees C. Different techniques, including Fourier transformed infrared spectroscopy (FTIR), thermal desorption spectrometry (TDS), atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used to investigate the specimens, It was found that the absorbance peak in the FTIR due to the stretching vibration of the Al-O bond shifts to smaller wave numbers with increasing fluence, shifting back to larger wave numbers with an increase of annealing temperature. The absorbance peak shift has a linear relationship with the fluence increase in the as-implanted state, while it does not have a linear relationship with the fluence increase after the annealing process. Surface deformation occurred in the specimens implanted with fluences of 2.0 and 8.0 x 10(16) ions/cm(2) in the annealing process. The phenomena described above can be attributed to differences in defect formation in the specimens. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Defect engineering for SiO2] precipitation is investigated using He-ion implantation as the first stage of separation by implanted oxygen (STMOX). Cavities are created in Si by implantation with helium ions. After thermal annealing at different temperatures, the sample is implanted with 120keV 8.0 x 10(16) cm(-2) O ions. The O ion energy is chosen such that the peak of the concentration distribution is centred at the cavity band. For comparison, another sample is implanted with O ions alone. Cross-sectional transmission electron microscopy (XTEM), Fourier transform infrared absorbance spectrometry (FTIR) and atomic force microscopy (AFM) measurements are used to investigate the samples. The results show that a narrow nano-cavity layer is found to be excellent nucleation sites that effectively assisted SiO2 formation and released crystal lattice strain associated with silicon oxidation.
Resumo:
Single crystals of 6H-SiC were implanted at 600 K with 100 key He ions to three successively fluences and subsequently annealed at different temperatures ranging from 873 to 1473 K in vacuum. The recovery of lattice damage was investigated by different techniques including Rutherford backscattering spectrometry in channeling geometry, Raman spectroscopy and Fourier transform infrared spectroscopy. All three techniques showed that the damage induced by helium ion implantation in the lattice is closely related to the fluence. Rutherford backscattering spectrometry/channeling data on high temperature implantations suggest that for a fluence of 3 x 10(16) He+/cm(2), extended defects are created by thermal annealing to 1473 K. Apart from a well-known intensity decrease of scattering peaks in Raman spectroscopy it was found that the absorbance peak in Fourier transform infrared spectroscopy due to the stretching vibration of Si-C bond shifted to smaller wave numbers with increasing fluence, shifting back to larger wave numbers with increasing annealing temperature. These phenomena are attributed to different lattice damage behavior induced by the hot implantation process, in which simultaneous recovery was prevailing. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we studied the changes in the photoluminescence spectra of the Ar+ ion implanted monocrystalline sapphire annealed at different atmospheres and different temperatures. Single crystals of sapphire (Al2O3) with the (1 0 (1) over bar 0) (m-samples) orientation were implanted at 623 K with 110 keV Ar+ ions to a fluence of 9.5 x 10(16) ions/cm(2). Photoluminescence measurement of the as-implanted sample shows a new emission band at 506 nm, which is attributed to the production of interstitial Al atoms. The intensity of emission band at 506 nm first increased then decreased with increase in annealing temperature. For the same annealing temperature, the intensity of PL peak at 506 nm of the sample annealed in air was higher than the sample annealed in vacuum. The experimental results show that the intensity of the PL peak at 506 nm of Ar-implanted sapphire can be enhanced by subsequent annealing with an enhancement of nearly 20 times. The influence of thermal annealing of the Ar-implanted samples on the new 506 nm emission band was discussed. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
New parameters of nearest-neighbor EAM (1N-EAM), n-th neighbor EAM (NN-EAM), and the second-moment approximation to the tight-binding (TB-SMA) potentials are obtained by fitting experimental data at different temperatures. In comparison with the available many-body potentials, our results suggest that the 1N-EAM potential with the new parameters is the best description of atomic interactions in studying the thermal expansion of noble metals. For mechanical properties, it is suggested that the elastic constants should be calculated in the experimental zero-stress states for all three potentials. Furthermore, for NNEAM and TB-SMA potentials, the calculated results approach the experimental data as the range of the atomic interaction increases from the first-neighbor to the sixth-neighbor distance.
Resumo:
In the present work, the cross-over rates of methanol and ethanol, respectively, through Nafion(R)-115 membranes at different temperatures and different concentrations have been measured and compared. The changes of Nafion(R)-115 membrane porosity in the presence of methanol or ethanol aqueous solutions were also determined by weighing vacuum-dried and alcohol solution-equilibrated membranes. The techniques of anode polarization and adsorption stripping voltarnmetry were applied to compare the electrochemical activity and adsorption ability, respectively. To investigate the consequences of methanol and ethanol permeation from the anode to the cathode on the performance of direct alcohol fuel cells (DAFCs), single DAFC tests, with methanol or ethanol as the fuel, have been carried out and the corresponding anode and cathode polarizations versus dynamic hydrogen electrode (DHE) were also performed. The effect of alcohol concentration on the performance of PtRu/C anode-based DAFCs was investigated.
Resumo:
The reactions of both thiophene and H2S onMo(2)C/Al2O3 catalyst have been studied by in situ FT-IR spectroscopy. CO adsorption was used to probe the surface sites of Mo2C/Al2O3 catalyst under the interaction and reaction of thiophene and H2S. When the fresh Mo2C/Al2O3 catalyst is treated with a thiophene/H-2 mixture above 473 K, hydrogenated species exhibiting IR bands in the regions 2800-3000 cm(-1) are produced on the surface, indicating that thiophene reacts with the fresh carbide catalyst at relatively low temperatures. IR spectra of adsorbed CO on fresh Mo2C/Al2O3 pretreated by thiophene/H-2 at different temperatures clearly reveal the gradual sulfidation of the carbide catalyst at temperatures higher than 473 K, while H2S/H-2 can sulfide the Mo2C/Al2O3 catalyst surface readily at room temperature (RT). The sulfidation of the carbide surface by the reaction with thiophene or H2S maybe the major cause of the deactivation of carbide catalysts in hydrotreating reactions. The surface of the sulfided carbide catalyst can be only partially regenerated by a recarburization using CH4/H-2 at 1033 K. When the catalyst is first oxidized and then recarburized, the carbide surface can be completely reproduced.
Resumo:
A sol-gel coating method for the preparation of extractive phase on bars used in sorptive microextraction is described. The extraction phase of poly(dimethylsiloxane) is partially crosslinked with the sol-gel network, and the most part is physically incorporated in the network. Three aging steps at different temperatures are applied to complete the crosslinking process. Thirty-micrometer-thick coating layer is obtained by one coating process. The improved coating shows good thermal stability up to 300degreesC. Spiked aqueous samples containing n-alkanes, polycyclic aromatic hydrocarbons and organophosphorus pesticides were analyzed by using the sorptive bars and GC. The results demonstrate that it is suitable for both aploar and polar analytes. The detection limit for chrysene is 7.44 ng/L, 0.74 ng/L for C-19 and 0.9 ng/L for phorate. The extraction equilibration can be reached in less than 15 min by supersonic extraction with the bars of 30 mum coating layer. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The role of acid strength of zeolites in liquid-phase alkylation of benzene with ethylene was studied over beta, MCM-22, and USY zeolites by means of adsorbing NH3 at different temperatures. The strong acid sites are active centers, while the weak acid sites are inactive. The selectivity behavior of the strong acid sites varies with the relative acid strength as well as the types of the zeolites.
Resumo:
Femtosecond time-resolved studies using fluorescence depletion spectroscopy were performed on Rhodamine 700 in acetone solution and on Oxazine 750 in acetone and formamide solutions at different temperatures. The experimental curves that include both fast and slow processes have been fitted using a biexponential function. Time constants of the fast process, which corresponds to the intramolecular vibrational redistribution (IVR) of solute molecules, range from 300 to 420 fs and increase linearly as the temperature of the environment decreases. The difference of the average vibrational energy of solute molecules in the ground state at different temperatures is a possible reason that induces this IVR time-constant temperature dependence. However, the time constants of the slow process, which corresponds to the energy transfer from vibrational hot solute molecules to the surroundings occurred on a time scale of 1-50 ps, changed dramatically at lower temperature, nonlinearly increasing with the decrease of temperature. Because of the C-H...O hydrogen-bond between acetone molecules, it is more reasonable that acetone molecules start to be associated, which can influence the energy transfer between dye molecules and acetone molecules efficiently, even at temperatures far over the freezing point.
Resumo:
The surface sites of supported molybdenum carbide catalyst derived from different synthesis stages have been studied by in situ FT-IR spectroscopy using CO as the probe molecule. Adsorbed CO on the reduced passivated Mo2C/Al2O3 catalyst gives a main band at 2180 cm(-1), which can be assigned to linearly adsorbed CO on Mo4+ sites. The IR results show that the surface of reduced passivated sample is dominated by molybdenum oxycarbide. However, a characteristic IR band at 2054 cm-1 was observed for the adsorbed CO on MoO3/Al2O3 carburized with CH4/H-2 mixture at 1033 K (fresh Mo2C/Al2O3), which can be assigned to linearly adsorbed CO on Modelta+ (0 < delta < 2) sites Of Mo2C/Al2O3, Unlike adsorbed CO on reduced passivated Mo2C/Al2O3 catalyst, the IR spectra of adsorbed CO on fresh Mo2C/Al2O3 shows similarity to that on some of the group VIII metals (such as Pt and Pd), suggesting that fresh carbide resembles noble metals. To study the stability Of Mo2C catalyst during H-2 treatment and find proper conditions to remove the deposited carbon species, H-2 treatment of fresh Mo2C/Al2O3 catalyst at different temperatures was conducted. Partial amounts of carbon atoms in Mo2C along with some surface-deposited carbon species can be removed by the H, treatment even at 450 K. Both the surface-deposited carbon species and carbon atoms in carbide can be extensively removed at temperatures above 873 K.
Resumo:
A simple, sensitive, and mild method for the determination of amino compounds based on a condensation reaction with fluorescence detection has been developed. 9-(2-Hydroxyethyl)acridone reacts with coupling agent N,N-carbonyldiimidazole at ambient temperature to form activated amide intermediate 9-(2-acridone)oxyethylcarbonylimidazole (AOCD). The amide intermediate (AOCD) preferably reacts with amino compounds under mild reactions in the presence of 4-(dimethylamino)pyridine (base catalyst) in acetonitrile to give the corresponding sensitively fluorescent derivatives with an excitation maximum lambda(ex) 404 mn and an emission maximum at lambda(em) 440 nm. The labeled derivatives exhibit high stability under reversed-phase conditions. The fluorescence intensities of derivatives in various solvents or at different temperatures were investigated. The method, in conjunction with a gradient elution, offers a baseline resolution of the common amine derivatives on a reversed-phase C-18 column. The LC separation for the derivatized amines shows good reproducibility with acetonitrile-water including 2.5% DMF as mobile phase. The relative standard deviations (n = 6) for each amine derivative are <4.5%. The detection limits (at a signal-to-noise ratio of 3) per injection were 0.16-12.8 ng/mL. Further research for the field of application, based on the AOCD amide intermediate as derivatization reagent, for the determination of free amines in real water samples is achieved.