892 resultados para Dawn of the Planet of the Apes
Resumo:
WASP-13b is a sub-Jupiter mass exoplanet orbiting a G1V type star with a period of 4.35 d.The current uncertainty in its impact parameter (0 < b < 0.46) results in poorly definedstellar and planetary radii. To better constrain the impact parameter, we have obtained highprecisiontransit observations with the rapid imager to search for exoplanets (RISE) instrumentmounted on 2.0-m Liverpool Telescope. We present four new transits which are fitted witha Markov chain Monte Carlo routine to derive accurate system parameters. We found anorbital inclination of 85. ◦ 2 ± 0. ◦ 3 resulting in stellar and planetary radii of 1.56 ± 0.04 Rand 1.39 ± 0.05RJup, respectively. This suggests that the host star has evolved off the mainsequence and is in the hydrogen-shell-burning phase.We also discuss how the limb darkeningaffects the derived system parameters.With a density of 0.17ρJ,WASP-13b joins the group oflow-density planets whose radii are too large to be explained by standard irradiation models.We derive a new ephemeris for the system, T0 = 245 5575.5136 ± 0.0016 (HJD) and P =4.353 011 ± 0.000 013 d. The planet equilibrium temperature (Tequ = 1500 K) and the brighthost star (V = 10.4mag) make it a good candidate for follow-up atmospheric studies.
Resumo:
The International Olympic Committee (IOC) declares environmental protection to be the third dimension of the Olympic movement. That, in effect, means that nations wishing to host the Games have to present themselves as reliable practitioners of environmental sustainability (ES) in their applications. The greening of sports mega-events, and the hosting of Olympic Games in particular, is now reasonably well established. Yet evidence from the first decade of environmentally-conscious Olympics points to diverging patterns of achievement in the operationalisation of the IOC’s ‘third pillar’. As is now common knowledge, for example, Sydney 2000 was the first ‘Green Olympics’ in the history of the Games; yet four years later, Athens provided a stark contrast, and was the subject of highly critical assessment reports by environmental organisations. Yet Athens has not stopped the Bid Committee for the Beijing 2008 Games claiming that it would ‘leave the greatest Olympic Games environmental legacy ever’ (UNEP 2007: 26), while the London 2012 promotes the concept of the ‘One Planet Olympics’.
In this context and in light of the current global economic crisis, can we claim that London 2012 has the capacity to fulfil its environmental ambitions? This question is adopted in continuity with similar framed questions that have been posed in relation to the most recent Olympics and it is tackled by adopting an investigative model that is placed within discourses of ‘reflexive modernisation’.
Resumo:
HR 8799 is a multi-planet system detected in direct imaging, with three companions known so far. Here, we present spatially resolved Very Large Telescope/NACO 3.88-4.10 µm spectroscopy of the middle planet, HR 8799 c, which has an estimated mass of ~10 M Jup, temperature of ~1100 K, and projected separation of 38 AU. The spectrum shows some differences in the continuum from existing theoretical models, particularly longwards of 4 µm, implying that detailed cloud structure or non-equilibrium conditions may play an important role in the physics of young exoplanetary atmospheres.
Resumo:
Abstract:
Background: Health care organisations
worldwide are faced with the need to develop
and implement strategic organisational plans
to meet the challenges of modern health care.
There is a need for models for developing, implementing and evaluating strategic plans that engage practitioners, and make a measurable difference to the patients that they serve. These presentations describe the development, implementation and evaluation of such a model by a team of senior nurses and practice developers, to underpin a strategy for nursing and midwifery in an acute hospital trust. Developing a Strategy The PARIHS (Promoting Action on Research Implementation in Health Services) conceptual framework (Kitson et al, 1998) proposes that successful implementation of change in practice is a function of the interplay of three core elements: the level of evidence supporting the proposed change; the context or environment in which the change takes place, and the way in which change is facilitated. We chose to draw on this framework to develop our strategy and implementation plan (O’Halloran, Martin and Connolly, 2005). At the centre of the plan are ward managers. These professionals provide leadership for the majority of staff in the trust and so were seen to be a key group in the implementation process.
Resumo:
We cross match the GALEX and Kepler surveys to create a unique dataset with both ultraviolet (UV) measurements and highly precise photometric variability measurements in the visible light spectrum. As stellar activity is driven by magnetic field modulations, we have used UV emission from the magnetically heated gas in the stellar atmosphere to serve as our proxy for the more well-known stellar activity indicator, R' HK . The R' HK approximations were in turn used to estimate the level of astrophysical noise expected in radial velocity (RV) measurements and these were then searched for correlations with photometric variability. We find significant scatter in our attempts to estimate RV noise for magnetically active stars, which we attribute to variations in the phase and strength of the stellar magnetic cycle that drives the activity of these targets. However, for stars we deem to be magnetically quiet, we do find a clear correlation between photometric variability and estimated levels of RV noise (with variability up to ~10 m s–1). We conclude that for these quiet stars, we can use photometric measurements as a proxy to estimate the RV noise expected. As a result, the procedure outlined in this paper may help select targets best-suited for RV follow-up necessary for planet confirmation.
Resumo:
The question of whether there is or was life on Mars has been one of the most pivotal since Schiaparellis' telescopic observations of the red planet. With the advent of the space age, this question can be addressed directly by exploring the surface of Mars and by bringing samples to Earth for analysis. The latter, however, is not free of problems. Life can be found virtually everywhere on Earth. Hence the potential for contaminating the Mars samples and compromising their scientific integrity is not negligible. Conversely, if life is present in samples from Mars, this may represent a potential source of extraterrestrial biological contamination for Earth. A range of measures and policies, collectively termed ‘planetary protection’, are employed to minimise risks and thereby prevent undesirable consequences for the terrestrial biosphere. This report documents discussions and conclusions from a workshop held in 2012, which followed a public conference focused on current capabilities for performing life-detection studies on Mars samples. The workshop focused on the evaluation of Mars samples that would maximise scientific productivity and inform decision making in the context of planetary protection. Workshop participants developed a strong consensus that the same measurements could be employed to effectively inform both science and planetary protection, when applied in the context of two competing hypotheses: 1) that there is no detectable life in the samples; or 2) that there is martian life in the samples. Participants then outlined a sequence for sample processing and defined analytical methods that would test these hypotheses. They also identified critical developments to enable the analysis of samples from Mars.
Resumo:
We characterize the planetary system Kepler-101 by performing a combined differential evolution Markov chain Monte Carlo analysisof Kepler data and forty radial velocities obtained with the HARPS-N spectrograph. This system was previously validated and iscomposed of a hot super-Neptune, Kepler-101b, and an Earth-sized planet, Kepler-101c. These two planets orbit the slightly evolvedand metal-rich G-type star in 3.49 and 6.03 days, respectively. With mass Mp = 51.1+5.1−4.7 M⊕, radius Rp = 5.77+0.85−0.79 R⊕, and density ρp = 1.45+0.83 −0.48 g cm−3, Kepler-101b is the first fully characterized super-Neptune, and its density suggests that heavy elements makeup a significant fraction of its interior; more than 60% of its total mass. Kepler-101c has a radius of 1.25+0.19−0.17 R⊕, which implies theabsence of any H/He envelope, but its mass could not be determined because of the relative faintness of the parent star for highly precise radial-velocity measurements (Kp = 13.8) and the limited number of radial velocities. The 1σ upper limit, Mp < 3.8 M⊕, excludes a pure iron composition with a probability of 68.3%. The architecture of the planetary system Kepler-101 − containing aclose-in giant planet and an outer Earth-sized planet with a period ratio slightly larger than the 3:2 resonance − is certainly of interest for scenarios of planet formation and evolution. This system does not follow the previously reported trend that the larger planet has the longer period in the majority of Kepler systems of planet pairs with at least one Neptune-sized or larger planet.
Resumo:
We report the sky-projected orbital obliquity (spin–orbit angle) of WASP-84 b, a 0.69MJup planet in an 8.52 day orbit around a G9V/K0V star, to be λ = −0.3 ± 1.7°. We obtain a true obliquity of ψ = 17.3 ± 7.7° from a measurement of the inclination of the stellar spin axis with respect to the sky plane. Due to the young age and the weak tidal forcing of the system, we suggest that the orbit of WASP-84b is unlikely to have both realigned and circularized from the misaligned and/or eccentric orbit likely to have arisen from high-eccentricity migration. Therefore we conclude that the planet probably migrated via interaction with the protoplanetary disk. This would make it the first “hot Jupiter” (P d < 10 ) to have been shown to have migrated via this pathway. Further, we argue that the distribution of obliquities for planets orbiting cool stars (Teff < 6250 K) suggests that high-eccentricity migration is an important pathway for the formation of short-orbit, giant planets.
Resumo:
It has been widely thought that measuring the misalignment angle between the orbital plane of a transiting exoplanet and the spin of its host star was a good discriminator between different migration processes for hot-Jupiters. Specifically, well-aligned hot-Jupiter systems (as measured by the Rossiter-McLaughlin effect) were thought to have formed via migration through interaction with a viscous disc, while misaligned systems were thought to have undergone a more violent dynamical history. These conclusions were based on the assumption that the planet-forming disc was well-aligned with the host star. Recent work by a number of authors has challenged this assumption by proposing mechanisms that act to drive the star-disc interaction out of alignment during the pre-main-sequence phase. We have estimated the stellar rotation axis of a sample of stars which host spatially resolved debris discs. Comparison of our derived stellar rotation axis inclination angles with the geometrically measured debris-disc inclinations shows no evidence for a misalignment between the two.
Resumo:
Behavioural phenotype research is of benefit to a large number of children with genetic syndromes and associated developmental delay. This article presents an overview of this research area and demonstrates how understanding pathways between gene disorders and behaviour can inform our understanding of the difficulties individuals with genetic syndromes and developmental delay experience, including self-injurious behaviour, social exploitation, social anxiety, social skills deficits, sensory differences, temper outbursts and repetitive behaviours. In addition, physical health difficulties and their interaction with behaviour are considered. The article demonstrates the complexity involved in assessing a child with a rare genetic syndrome.
Resumo:
Context. The magnetic activity of planet-hosting stars is an importantfactor for estimating the atmospheric stability of close-in exoplanetsand the age of their host stars. It has long been speculated thatclose-in exoplanets can influence the stellar activity level. However,testing for tidal or magnetic interaction effects in samples ofplanet-hosting stars is difficult because stellar activity hindersexoplanet detection, so that stellar samples with detected exoplanetsshow a bias toward low activity for small exoplanets.
Aims: Weaim to test whether exoplanets in close orbits influence the stellarrotation and magnetic activity of their host stars.
Methods: Wedeveloped a novel approach to test for systematic activity-enhancementsin planet-hosting stars. We use wide (several 100 AU) binary systems inwhich one of the stellar components is known to have an exoplanet, whilethe second stellar component does not have a detected planet andtherefore acts as a negative control. We use the stellar coronal X-rayemission as an observational proxy for magnetic activity and analyzeobservations performed with Chandra and XMM-Newton.
Results: Wefind that in two systems for which strong tidal interaction can beexpected the planet-hosting primary displays a much higher magneticactivity level than the planet-free secondary. In three systems forwhich weaker tidal interaction can be expected the activity levels ofthe two stellar components agree with each other.
Conclusions:Our observations indicate that the presence of Hot Jupiters may inhibitthe spin-down of host stars with thick outer convective layers. Possiblecauses for this effect include a transfer of angular momentum from theplanetary orbit to the stellar rotation through tidal interaction, ordifferences during the early evolution of the system, where the hoststar may decouple from the protoplanetary disk early because of a gapopened by the forming Hot Jupiter.