979 resultados para Data portal
Resumo:
The advent of next generation sequencing technologies (NGS) has expanded the area of genomic research, offering high coverage and increased sensitivity over older microarray platforms. Although the current cost of next generation sequencing is still exceeding that of microarray approaches, the rapid advances in NGS will likely make it the platform of choice for future research in differential gene expression. Connectivity mapping is a procedure for examining the connections among diseases, genes and drugs by differential gene expression initially based on microarray technology, with which a large collection of compound-induced reference gene expression profiles have been accumulated. In this work, we aim to test the feasibility of incorporating NGS RNA-Seq data into the current connectivity mapping framework by utilizing the microarray based reference profiles and the construction of a differentially expressed gene signature from a NGS dataset. This would allow for the establishment of connections between the NGS gene signature and those microarray reference profiles, alleviating the associated incurring cost of re-creating drug profiles with NGS technology. We examined the connectivity mapping approach on a publicly available NGS dataset with androgen stimulation of LNCaP cells in order to extract candidate compounds that could inhibit the proliferative phenotype of LNCaP cells and to elucidate their potential in a laboratory setting. In addition, we also analyzed an independent microarray dataset of similar experimental settings. We found a high level of concordance between the top compounds identified using the gene signatures from the two datasets. The nicotine derivative cotinine was returned as the top candidate among the overlapping compounds with potential to suppress this proliferative phenotype. Subsequent lab experiments validated this connectivity mapping hit, showing that cotinine inhibits cell proliferation in an androgen dependent manner. Thus the results in this study suggest a promising prospect of integrating NGS data with connectivity mapping. © 2013 McArt et al.
Resumo:
The scheduling problem in distributed data-intensive computing environments has become an active research topic due to the tremendous growth in grid and cloud computing environments. As an innovative distributed intelligent paradigm, swarm intelligence provides a novel approach to solving these potentially intractable problems. In this paper, we formulate the scheduling problem for work-flow applications with security constraints in distributed data-intensive computing environments and present a novel security constraint model. Several meta-heuristic adaptations to the particle swarm optimization algorithm are introduced to deal with the formulation of efficient schedules. A variable neighborhood particle swarm optimization algorithm is compared with a multi-start particle swarm optimization and multi-start genetic algorithm. Experimental results illustrate that population based meta-heuristics approaches usually provide a good balance between global exploration and local exploitation and their feasibility and effectiveness for scheduling work-flow applications. © 2010 Elsevier Inc. All rights reserved.
Resumo:
This article proposes that a complementary relationship exists between the formalised nature of digital loyalty card data, and the informal nature of small business market orientation. A longitudinal, case-based research approach analysed this relationship in small firms given access to Tesco Clubcard data. The findings reveal a new-found structure and precision in small firm marketing planning from data exposure; this complemented rather than conflicted with an intuitive feel for markets. In addition, small firm owners were encouraged to include employees in marketing planning.
Resumo:
Web sites that rely on databases for their content are now ubiquitous. Query result pages are dynamically generated from these databases in response to user-submitted queries. Automatically extracting structured data from query result pages is a challenging problem, as the structure of the data is not explicitly represented. While humans have shown good intuition in visually understanding data records on a query result page as displayed by a web browser, no existing approach to data record extraction has made full use of this intuition. We propose a novel approach, in which we make use of the common sources of evidence that humans use to understand data records on a displayed query result page. These include structural regularity, and visual and content similarity between data records displayed on a query result page. Based on these observations we propose new techniques that can identify each data record individually, while ignoring noise items, such as navigation bars and adverts. We have implemented these techniques in a software prototype, rExtractor, and tested it using two datasets. Our experimental results show that our approach achieves significantly higher accuracy than previous approaches. Furthermore, it establishes the case for use of vision-based algorithms in the context of data extraction from web sites.
Resumo:
Stoddart, S. and C. Malone,
Resumo:
Stoddart, S., C. Malone, and D. Redhouse, 2005.
Resumo:
Identifying differential expression of genes in psoriatic and healthy skin by microarray data analysis is a key approach to understand the pathogenesis of psoriasis. Analysis of more than one dataset to identify genes commonly upregulated reduces the likelihood of false positives and narrows down the possible signature genes. Genes controlling the critical balance between T helper 17 and regulatory T cells are of special interest in psoriasis. Our objectives were to identify genes that are consistently upregulated in lesional skin from three published microarray datasets. We carried out a reanalysis of gene expression data extracted from three experiments on samples from psoriatic and nonlesional skin using the same stringency threshold and software and further compared the expression levels of 92 genes related to the T helper 17 and regulatory T cell signaling pathways. We found 73 probe sets representing 57 genes commonly upregulated in lesional skin from all datasets. These included 26 probe sets representing 20 genes that have no previous link to the etiopathogenesis of psoriasis. These genes may represent novel therapeutic targets and surely need more rigorous experimental testing to be validated. Our analysis also identified 12 of 92 genes known to be related to the T helper 17 and regulatory T cell signaling pathways, and these were found to be differentially expressed in the lesional skin samples.
Resumo:
We consider the problem of self-healing in peer-to-peer networks that are under repeated attack by an omniscient adversary. We assume that, over a sequence of rounds, an adversary either inserts a node with arbitrary connections or deletes an arbitrary node from the network. The network responds to each such change by quick “repairs,” which consist of adding or deleting a small number of edges. These repairs essentially preserve closeness of nodes after adversarial deletions, without increasing node degrees by too much, in the following sense. At any point in the algorithm, nodes v and w whose distance would have been l in the graph formed by considering only the adversarial insertions (not the adversarial deletions), will be at distance at most l log n in the actual graph, where n is the total number of vertices seen so far. Similarly, at any point, a node v whose degree would have been d in the graph with adversarial insertions only, will have degree at most 3d in the actual graph. Our distributed data structure, which we call the Forgiving Graph, has low latency and bandwidth requirements. The Forgiving Graph improves on the Forgiving Tree distributed data structure from Hayes et al. (2008) in the following ways: 1) it ensures low stretch over all pairs of nodes, while the Forgiving Tree only ensures low diameter increase; 2) it handles both node insertions and deletions, while the Forgiving Tree only handles deletions; 3) it requires only a very simple and minimal initialization phase, while the Forgiving Tree initially requires construction of a spanning tree of the network.