916 resultados para DC voltage droop control
Resumo:
This paper is on a wind energy conversion system simulation of a transient analysis due to a blade pitch control malfunction. The aim of the transient analysis is the study of the behavior of a back-to-back multiple point clamped five-level full-power converter implemented in a wind energy conversion system equipped with a permanent magnet synchronous generator. An alternate current link connects the system to the grid. The drive train is modeled by a three-mass model in order to simulate the dynamic effect of the wind on the tower. The control strategy is based on fractional-order control. Unbalance voltages in the DC-link capacitors are lessen due to the control strategy, balancing the capacitor banks voltages by a selection of the output voltage vectors. Simulation studies are carried out to evaluate not only the system behavior, but also the quality of the energy injected into the electric grid.
Resumo:
This paper presents an Active Gate Signaling scheme to reduce voltage/current spikes across insulated gate power switches in hard switching power electronic circuits. Voltage and/or current spikes may cause EMI noise. In addition, they increase voltage/current stress on the switch. Traditionally, a higher gate resistance is chosen to reduce voltage/current spikes. Since the switching loss will increase remarkably, an active gate voltage control scheme is developed to improve efficiency of hard switching circuits while the undesirable voltage and/or current spikes are minimized.
Resumo:
To allocate and size capacitors in a distribution system, an optimization algorithm, called Discrete Particle Swarm Optimization (DPSO), is employed in this paper. The objective is to minimize the transmission line loss cost plus capacitors cost. During the optimization procedure, the bus voltage, the feeder current and the reactive power flowing back to the source side should be maintained within standard levels. To validate the proposed method, the semi-urban distribution system that is connected to bus 2 of the Roy Billinton Test System (RBTS) is used. This 37-bus distribution system has 22 loads being located in the secondary side of a distribution substation (33/11 kV). Reducing the transmission line loss in a standard system, in which the transmission line loss consists of only about 6.6 percent of total power, the capabilities of the proposed technique are seen to be validated.
Resumo:
In this paper, a fixed-switching-frequency closed-loop modulation of a voltage-source inverter (VSI), upon the digital implementation of the modulation process, is analyzed and characterized. The sampling frequency of the digital processor is considered as an integer multiple of the modulation switching frequency. An expression for the determination of the modulation design parameter is developed for smooth modulation at a fixed switching frequency. The variation of the sampling frequency, switching frequency, and modulation index has been analyzed for the determination of the switching condition under closed loop. It is shown that the switching condition determined based on the continuous-time analysis of the closed-loop modulation will ensure smooth modulation upon the digital implementation of the modulation process. However, the stability properties need to be tested prior to digital implementation as they get deteriorated at smaller sampling frequencies. The closed-loop modulation index needs to be considered maximum while determining the design parameters for smooth modulation. In particular, a detailed analysis has been carried out by varying the control gain in the sliding-mode control of a two-level VSI. The proposed analysis of the closed-loop modulation of the VSI has been verified for the operation of a distribution static compensator. The theoretical results are validated experimentally on both single- and three-phase systems.
Resumo:
This paper presents several shaft voltage reduction techniques for doubly-fed induction generators in wind turbine applications. These techniques includes: pulse width modulated voltage without zero vectors, multi-level inverters with proper PWM strategy, better generator design to minimize effective capacitive couplings in shaft voltage, active common-mode filter, reducing dc-link voltage and increasing modulation index. These methods have been verified with mathematical analysis and simulations.
Resumo:
A high voltage pulsed power supply is proposed in this paper based on oscillation between an inductor and a capacitor in an LC circuit. A two-leg resonant circuit, supplied through an inverter with an alternative voltage waveform, can generate output voltage up to four times an input voltage magnitude. Bipolar and unipolar modulations are used in a single phase inverter to analyse their effects on the proposed resonant converter. Simulations have been carried out to evaluate the proposed topology and control.
Resumo:
This paper presents a high voltage pulsed power system based on low voltage switch-capacitor units connected to a current source for several applications such as plasma systems. A buck-boost converter topology is used to utilize the current source and a series of low voltage switch-capacitor units is connected to the current source in order to provide high voltage with high voltage stress (dv/dt) as demanded by loads. This pulsed power converter is flexible in terms of energy control, in that the stored energy in the current source can be adjusted by changing the current magnitude to significantly improve the efficiency of various systems with different requirements. Output voltage magnitude and stress (dv/dt) can be controlled by a proper selection of components and control algorithm to turn on and off switching devices.
Resumo:
Multilevel inverters provide an attractive solution for power electronics when both reduced harmonic contents and high voltages are required. In this paper, a novel predictive current control technique is proposed for a three-phase multilevel inverter, which controls the capacitors voltages and load currents with low switching losses. The advantage of this contribution is that the technique can be applied to more voltage levels without significantly changing the control circuit. The three-phase three-level inverter with a pure inductive load has been implemented to track reference currents using analogue circuits and programmable logic device.
Resumo:
This paper describes control methods for proper load sharing between parallel converters connected in a microgrid and supplied by distributed generators (DGs). It is assumed that the microgrid spans a large area and it supplies loads in both in grid connected and islanded modes. A control strategy is proposed to improve power quality and proper load sharing in both islanded and grid connected modes. It is assumed that each of the DGs has a local load connected to it which can be unbalanced and/or nonlinear. The DGs compensate the effects of unbalance and nonlinearity of the local loads. Common loads are also connected to the microgrid, which are supplied by the utility grid under normal conditions. However during islanding, each of the DGs supplies its local load and shares the common load through droop characteristics. Both impedance and motor loads are considered to verify the system response. The efficacy of the controller has been validated through simulation for various operating conditions using PSCAD. It has been found through simulation that the total Harmonic Distortion (THD) of the of the microgrid voltage is about 10% and the negative and zero sequence component are around 20% of the positive sequence component before compensation. After compensation, the THD remain below 0.5%, whereas, negative and zero sequence components of the voltages remain below 0.02% of the positive sequence component.
Resumo:
A novel H-bridge multilevel PWM converter topology based on a series connection of a high voltage (HV) diode-clamped inverter and a low voltage (LV) conventional inverter is proposed. A DC link voltage arrangement for the new hybrid and asymmetric solution is presented to have a maximum number of output voltage levels by preserving the adjacent switching vectors between voltage levels. Hence, a fifteen-level hybrid converter can be attained with a minimum number of power components. A comparative study has been carried out to present high performance of the proposed configuration to approach a very low THD of voltage and current, which leads to the possible elimination of output filter. Regarding the proposed configuration, a new cascade inverter is verified by cascading an asymmetrical diode-clamped inverter, in which nineteen levels can be synthesized in output voltage with the same number of components. To balance the DC link capacitor voltages for the maximum output voltage resolution as well as synthesise asymmetrical DC link combination, a new Multi-output Boost (MOB) converter is utilised at the DC link voltage of a seven-level H-bridge diode-clamped inverter. Simulation and hardware results based on different modulations are presented to confirm the validity of the proposed approach to achieve a high quality output voltage.
Resumo:
Fast thrust changes are important for authoritive control of VTOL micro air vehicles. Fixed-pitch rotors that alter thrust by varying rotor speed require high-bandwidth control systems to provide adequate performace. We develop a feedback compensator for a brushless hobby motor driving a custom rotor suitable for UAVs. The system plant is identified using step excitation experiments. The aerodynamic operating conditions of these rotors are unusual and so experiments are performed to characterise expected load disturbances. The plant and load models lead to a proportional controller design capable of significantly decreasing rise-time and propagation of disturbances, subject to bus voltage constraints.