971 resultados para Cylindrical Polyelectrolyte Brushes ATRP Synthesis grafting from
Resumo:
The environmental problems caused by human activity are one of the main themes of debate of the last Century. As regard plastics, the use of non-renewable sources together with the accumulation of waste in natural habitats are causing serious pollution problems. For this reason, a continuously growing interest is recorded around sustainable materials, potential candidate for the replacement of traditional recalcitrant plastics. Promising results have been obtained with biopolymers, in particular with the class of biopolyesters. Their potential biodegradability and biobased nature is particularly interesting mainly for food packaging, where the multilayer systems normally used and the contamination by organic matter create severe recycling limits. In this framework, the present research has been conducted with the aim of synthetizing, modifying and characterizing biopolymers for food packaging application. New bioplastics based on monomers derived from renewable resources were successfully synthetized by two-step melt polycondensation and chain extension reaction following the “Green chemistry” principles. Moreover, well-known biopolyesters have been modified by blending or copolymerization, both resulting effective techniques to ad hoc tune the polymer final characteristics. The materials obtained have been processed and characterized from the chemical, structural, thermal and mechanical point of view; more specific characterizations as compostability tests, surface hydrophilicity film evaluation and barrier property measurements were conducted.
Resumo:
Sustainable chemicals currently have a very limited market share due to current low production but biomass is expected to become one of the major renewable energy and fine chemicals sources in the coming years. Bearing in mind the compromise of all nations to climatic change remediation, the industries will need to use efficient catalysts and green processes to meet the requirements of emissions and efficiency. This project is expected to develop new catalysts to convert 1,6-hexanediol to adipic acid through a green approach based on the “nano-catalysis” and “green chemistry” concepts. Supported Au and Pd nanoparticles were used to study one-pot reaction of HDO oxidation to AA using O2 as a final oxidant and H2O as a solvent. Catalytic results showed that under low pressure O2 atmosphere and low temperature (< 120°C) AuNPs supported on basic-supports are more active than acid and amphoteric oxides. The effect of basic oxide (MgO) addition to MgF2 was studied. The study showed that doping of MgF2 with MgO increased significantly the activity of the catalyst. The best results were obtained with the Au/0.4MgF2-0.6MgO sample, which gave the selectivity to AA of 33% at HDO conversion of 62%.
Resumo:
Hybrid bioisoster derivatives from N-acylhydrazones and furoxan groups were designed with the objective of obtaining at least a dual mechanism of action: cruzain inhibition and nitric oxide (NO) releasing activity. Fifteen designed compounds were synthesized varying the substitution in N-acylhydrazone and in furoxan group as well. They had its anti-Trypanosoma cruzi activity in amastigotes forms, NO releasing potential and inhibitory cruzain activity evaluated. The two most active compounds (6, 14) both in the parasite amastigotes and in the enzyme contain the nitro group in para position of the aromatic ring. The permeability screening in Caco-2 cell and cytotoxicity assay in human cells were performed for those most active compounds and both showed to be less cytotoxic than the reference drug, benznidazole. Compound 6 was the most promising, since besides activity it showed good permeability and selectivity index, higher than the reference drug. Thereby the compound 6 was considered as a possible candidate for additional studies.
Resumo:
In the present study, semi-purified laccase from Trametes versicolor was applied for the synthesis of silver nanoparticles, and the properties of the produced nanoparticles were characterized. All of the analyses of the spectra indicated silver nanoparticle formation. A complete characterization of the silver nanoparticles showed that a complex of silver nanoparticles and silver ions was produced, with the majority of the particles having a Ag(2+) chemical structure. A hypothetical mechanistic scheme was proposed, suggesting that the main pathway that was used was the interaction of silver ions with the T1 site of laccase, producing silver nanoparticles with the concomitant inactivation of laccase activity and posterior complexing with silver ions.
Resumo:
In this work we have studied cyclooctene epoxidation with PhIO, using a new iron porphyrin, 5,10,15,20-tetrakis(2-hydroxy-5-nitrophenyl)porphyrinato iron(III), supported on silica matrices via eletrostatic interaction and / or covalent bonds as catalyst. These catalysts were obtained and immobilized on the solid supports propyltrimethylammonium silica (SiN+); propyltrimethylammonium and propylimidazole silica [SiN+(IPG)] and chloropropylsilica (CPS) via elestrostatic interactions and covalent binding. Characterization of the supported catalysts by UV-Vis spectroscopy and EPR (Electron paramagnetic resonance) indicated the presence of a mixture of FeII and FeIII species in all of the three obtained catalysts. In the case of (Z)-cyclooctene epoxidation by PhIO the yields observed for cis-epoxycyclooctane were satisfactory for the reactions catalyzed by the three materials (ranging from 68% to 85%). Such results indicate that immobilization of metalloporphyrins onto solid supports via groups localized on the ortho positions of their mesophenyl rings can lead to efficient catalysts for epoxidation reactions. The catalyst 1-CPS is less active than 1-SiN and 1-SiN(IPG), this argues in favour of the immobilization of this metalloporphyrin onto solids via electrostatic interactions, which is easier to achieve and results in more active oxidation catalysts. Interestingly, the activity of the supported catalysts remained the same even after three successive recyclings; therefore, they are stable under the oxidizing conditions.
Resumo:
Dipeptide syntheses starting from Ac-L-Tyr-OEt or Z-L-X-OMe (X: Asp, Tyr, Phe, Arg, Lys or Thr) and glycine amide in biphasic reaction media were achieved using two commercially available porcine pancreatic lipase (PPL) preparations (crude (cPPL) and purified PPL (pPPL)). Under the mild conditions employed, α-chymotrypsin, a pancreatic protease that also presents esterase activity, catalyzed Ac-L-Tyr-Gly-NH2 synthesis with high productivity. Product hydrolysis also occurred in most of the syntheses studied. Polyacrylamide gel electrophoresis, enzymatic assays employing specific chromogenic substrates and size-exclusion chromatography revealed that cPPL and pPPL contain contaminant proteases and, therefore, exhibit esterase and amidase activities. Overall, these data indicate that those contaminants may be the main catalysts of peptide bond synthesis when Nα-blocked-L-amino acid esters and the commercial PPL preparations are used. On the other hand, such data do not contest the possibility of using such enzyme preparations as an inexpensive source of catalysts for dipeptide synthesis under soft conditions.
Resumo:
We report the synthesis of single-phase, crystalline CdSiO3 nanostructures at 580ºC; to the best of our knowledge, this is the lowest temperature at which this material is reported to form. The desired phase does not form below 580ºC, since the diffraction peaks are shifted to lower angles in the material treated at 570ºC when compared to JDPDS Card No. 85-0310. The source of silicon has strong influence on the product morphology: Na2SiO3 yields single-phase CdSiO3 in needle-shaped nanostructures, while high surface area mesostructured SiO2 yields coralloid-shaped particles. Low angle X-ray diffractometry reveals that the mesostructured nature of the silica precursor is not maintained in the resulting CdSiO3. Scanning electron microscopy suggests that in this case a transition occurs between the spherical morphology of the precursor and the needle-shape morphology of the material prepared from Na2SiO3. The surface area of the silica precursor has a strong influence in the reaction, since the use of commercial silica with a lower surface area does not yield the desired product.
Resumo:
Isosorbide succinate moieties were incorporated into poly(L-lactide) (PLLA) backbone in order to obtain a new class of biodegradable polymer with enhanced properties. This paper describes the synthesis and characterization of four types of low molecular weight copolymers. Copolymer I was obtained from monomer mixtures of L-lactide, isosorbide, and succinic anhydride; II from oligo(L-lactide) (PLLA), isosorbide, and succinic anhydride; III from oligo(isosorbide succinate) (PIS) and L-lactide; and IV from transesterification reactions between PLLA and PIS. MALDI-TOFMS and 13C-NMR analyses gave evidence that co-oligomerization was successfully attained in all cases. The data suggested that the product I is a random co-oligomer and the products II-IV are block co-oligomers.
Resumo:
Aims. We present the analysis of the [alpha/Fe] abundance ratios for a large number of stars at several locations in the Milky Way bulge with the aim of constraining its formation scenario. Methods. We obtained FLAMES-GIRAFFE spectra (R = 22 500) at the ESO Very Large Telescope for 650 bulge red giant branch (RGB) stars and performed spectral synthesis to measure Mg, Ca, Ti, and Si abundances. This sample is composed of 474 giant stars observed in 3 fields along the minor axis of the Galactic bulge and at latitudes b = -4 degrees, b = -6 degrees, b = -12 degrees. Another 176 stars belong to a field containing the globular cluster NGC 6553, located at b = -3 degrees and 5 degrees away from the other three fields along the major axis. Stellar parameters and metallicities for these stars were presented in Zoccali et al. (2008, A&A, 486, 177). We have also re-derived stellar parameters and abundances for the sample of thick and thin disk red giants analyzed in Alves-Brito et al. (2010, A&A, 513, A35). Therefore using a homogeneous abundance database for the bulge, thick and thin disk, we have performed a differential analysis minimizing systematic errors, to compare the formation scenarios of these Galactic components. Results. Our results confirm, with large number statistics, the chemical similarity between the Galactic bulge and thick disk, which are both enhanced in alpha elements when compared to the thin disk. In the same context, we analyze [alpha/Fe] vs. [Fe/H] trends across different bulge regions. The most metal rich stars, showing low [alpha/Fe] ratios at b = -4 degrees disappear at higher Galactic latitudes in agreement with the observed metallicity gradient in the bulge. Metal-poor stars ([Fe/H] < -0.2) show a remarkable homogeneity at different bulge locations. Conclusions. We have obtained further constrains for the formation scenario of the Galactic bulge. A metal-poor component chemically indistinguishable from the thick disk hints for a fast and early formation for both the bulge and the thick disk. Such a component shows no variation, neither in abundances nor kinematics, among different bulge regions. A metal-rich component showing low [alpha/Fe] similar to those of the thin disk disappears at larger latitudes. This allows us to trace a component formed through fast early mergers (classical bulge) and a disk/bar component formed on a more extended timescale.
Resumo:
Context. Analysis of ages and metallicities of star clusters in the Magellanic Clouds provide information for studies on the chemical evolution of the Clouds and other dwarf irregular galaxies. Aims. The aim is to derive ages and metallicities from integrated spectra of 14 star clusters in the Small Magellanic Cloud, including a few intermediate/old age star clusters. Methods. Making use of a full-spectrum fitting technique, we compared the integrated spectra of the sample clusters to three different sets of single stellar population models, using two fitting codes available in the literature. Results. We derive the ages and metallicities of 9 intermediate/old age clusters, some of them previously unstudied, and 5 young clusters. Conclusions. We point out the interest of the newly identified as intermediate/old age clusters HW1, NGC 152, Lindsay 3, Lindsay 11, and Lindsay 113. We also confirm the old ages of NGC 361, NGC 419, Kron 3, and of the very well-known oldest SMC cluster, NGC 121.
Resumo:
We develop an automated spectral synthesis technique for the estimation of metallicities ([Fe/H]) and carbon abundances ([C/Fe]) for metal-poor stars, including carbon-enhanced metal-poor stars, for which other methods may prove insufficient. This technique, autoMOOG, is designed to operate on relatively strong features visible in even low- to medium-resolution spectra, yielding results comparable to much more telescope-intensive high-resolution studies. We validate this method by comparison with 913 stars which have existing high-resolution and low- to medium-resolution to medium-resolution spectra, and that cover a wide range of stellar parameters. We find that at low metallicities ([Fe/H] less than or similar to -2.0), we successfully recover both the metallicity and carbon abundance, where possible, with an accuracy of similar to 0.20 dex. At higher metallicities, due to issues of continuum placement in spectral normalization done prior to the running of autoMOOG, a general underestimate of the overall metallicity of a star is seen, although the carbon abundance is still successfully recovered. As a result, this method is only recommended for use on samples of stars of known sufficiently low metallicity. For these low- metallicity stars, however, autoMOOG performs much more consistently and quickly than similar, existing techniques, which should allow for analyses of large samples of metal-poor stars in the near future. Steps to improve and correct the continuum placement difficulties are being pursued.
Resumo:
The Ca II triplet (CaT) feature in the near-infrared has been employed as a metallicity indicator for individual stars as well as integrated light of Galactic globular clusters (GCs) and galaxies with varying degrees of success, and sometimes puzzling results. Using the DEIMOS multi-object spectrograph on Keck we obtain a sample of 144 integrated light spectra of GCs around the brightest group galaxy NGC 1407 to test whether the CaT index can be used as ametallicity indicator for extragalactic GCs. Different sets of single stellar population models make different predictions for the behavior of the CaT as a function of metallicity. In this work, the metallicities of the GCs around NGC 1407 are obtained from CaT index values using an empirical conversion. The measured CaT/metallicity distributions show unexpected features, the most remarkable being that the brightest red and blue GCs have similar CaT values despite their large difference in mean color. Suggested explanations for this behavior in the NGC 1407 GC system are (1) the CaT may be affected by a population of hot blue stars, (2) the CaT may saturate earlier than predicted by the models, and/or (3) color may not trace metallicity linearly. Until these possibilities are understood, the use of the CaT as a metallicity indicator for the integrated spectra of extragalactic GCs will remain problematic.
Resumo:
It has been known for decades that some insect-infecting trypanosomatids can survive in culture without heme supplementation while others cannot, and that this capability is associated with the presence of a betaproteobacterial endosymbiont in the flagellate's cytoplasm. However, the specific mechanisms involved in this process remained obscure. In this work, we sequence and phylogenetically analyze the heme pathway genes from the symbionts and from their hosts, as well as from a number of heme synthesis-deficient Kinetoplastida. Our results show that the enzymes responsible for synthesis of heme are encoded on the symbiont genomes and produced in close cooperation with the flagellate host. Our evidence suggests that this synergistic relationship is the end result of a history of extensive gene loss and multiple lateral gene transfer events in different branches of the phylogeny of the Trypanosomatidae.
Resumo:
This work describes an easy synthesis (one pot) of MFe(2)O(4) (M = Co, Fe, Mn, and Ni) magnetic nanoparticles MNPs by the thermal decomposition of Fe(Acac)(3)/M(Acac)(2) by using BMI center dot NTf(2) (1-n-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide) or BMI center dot PF(6) (1-n-butyl-3-methylimidazolium hexafluorophosphate) ionic liquids (ILs) as recycling solvents and oleylamine as the reducing and surface modifier agent. The effects of reaction temperature and reaction time on the features of the magnetic nanomaterials (size and magnetic properties) were investigated. The growth of the MNPs is easily controlled in the IL by adjusting the reaction temperature and time, as inferred from Fe(3)O(4) MNPs obtained at 150 degrees C, 200 degrees C and 250 degrees C with mean diameters of 8, 10 and 15 nm, respectively. However, the thermal decomposition of Fe(Acac)(3) performed in a conventional high boiling point solvent (diphenyl ether, bp 259 degrees C), under a similar Fe to oleylamine molar ratio used in the IL synthesis, does not follow the same growth mechanism and rendered only smaller NPs of 5 nm mean diameter. All MNPs are covered by at least one monolayer of oleylamine making them readily dispersible in non-polar solvents. Besides the influence on the nanoparticles growth, which is important for the preparation of highly crystalline MNPs, the IL was easily recycled and has been used in at least 20 successive syntheses.
Resumo:
Schistosomes are blood flukes which cause schistosomiasis, a disease affecting approximately 200 million people worldwide. Along with several other important human parasites including trypanosomes and Plasmodium, schistosomes lack the de novo pathway for purine synthesis and depend exclusively on the salvage pathway for their purine requirements, making the latter an attractive target for drug development. Part of the pathway involves the conversion of inosine (or guanosine) into hypoxanthine (or guanine) together with ribose-1-phosphate (R1P) or vice versa. This inter-conversion is undertaken by the enzyme purine nucleoside phosphorylase (PNP) which has been used as the basis for the development of novel anti-malarials, conceptually validating this approach. It has been suggested that, during the reverse reaction, R1P binding to the enzyme would occur only as a consequence of conformational changes induced by hypoxanthine, thus making a binary PNP-R1P complex unlikely. Contradictory to this statement, a crystal structure of just such a binary complex involving the Schistosoma mansoni enzyme has been successfully obtained. The ligand shows an intricate hydrogen-bonding network in the phosphate and ribose binding sites and adds a further chapter to our knowledge which could be of value in the future development of selective inhibitors.