875 resultados para Curved nanostructures


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Excessive exposure to solar Ultra-Violet (UV) light is the main cause of most skin cancers in humans. Factors such as the increase of solar irradiation at ground level (anthropic pollution), the rise in standard of living (vacation in sunny areas), and (mostly) the development of outdoor activities have contributed to increase exposure. Thus, unsurprisingly, incidence of skin cancers has increased over the last decades more than that of any other cancer. Melanoma is the most lethal cutaneous cancer, while cutaneous carcinomas are the most common cancer type worldwide. UV exposure depends on environmental as well as individual factors related to activity. The influence of individual factors on exposure among building workers was investigated in a previous study. Posture and orientation were found to account for at least 38% of the total variance of relative individual exposure. A high variance of short-term exposure was observed between different body locations, indicating the occurrence of intense, subacute exposures. It was also found that effective short-term exposure ranged between 0 and 200% of ambient irradiation, suggesting that ambient irradiation is a poor predictor of effective exposure. Various dosimetric techniques enable to assess individual effective exposure, but dosimetric measurements remain tedious and tend to be situation-specific. As a matter of facts, individual factors (exposure time, body posture and orientation in the sun) often limit the extrapolation of exposure results to similar activities conducted in other conditions. Objective: The research presented in this paper aims at developing and validating a predictive tool of effective individual exposure to solar UV. Methods: Existing computer graphic techniques (3D rendering) were adapted to reflect solar exposure conditions and calculate short-term anatomical doses. A numerical model, represented as a 3D triangular mesh, is used to represent the exposed body. The amount of solar energy received by each "triangle is calculated, taking into account irradiation intensity, incidence angle and possible shadowing from other body parts. The model take into account the three components of the solar irradiation (direct, diffuse and albedo) as well as the orientation and posture of the body. Field measurements were carried out using a forensic mannequin at the Payerne MeteoSwiss station. Short-term dosimetric measurements were performed in 7 anatomical locations for 5 body postures. Field results were compared to the model prediction obtained from the numerical model. Results: The best match between prediction and measurements was obtained for upper body parts such as shoulders (Ratio Modelled/Measured; Mean = 1.21, SD = 0.34) and neck (Mean = 0.81, SD = 0.32). Small curved body parts such as forehead (Mean = 6.48, SD = 9.61) exhibited a lower matching. The prediction is less accurate for complex postures such as kneeling (Mean = 4.13, SD = 8.38) compared to standing up (Mean = 0.85, SD = 0.48). The values obtained from the dosimeters and the ones computed from the model are globally consistent. Conclusion: Although further development and validation are required, these results suggest that effective exposure could be predicted for a given activity (work or leisure) in various ambient irradiation conditions. Using a generic modelling approach is of high interest in terms of implementation costs as well as predictive and retrospective capabilities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An efficient high-resolution (HR) three-dimensional (3D) seismic reflection system for small-scale targets in lacustrine settings was developed. In Lake Geneva, near the city of Lausanne, Switzerland, the offshore extension of a complex fault zone well mapped on land was chosen for testing our system. A preliminary two-dimensional seismic survey indicated structures that include a thin (<40 m) layer of subhorizontal Quaternary sediments that unconformably overlie south-east-dipping Tertiary Molasse beds and a major fault zone (Paudeze Fault Zone) that separates Plateau and Subalpine Molasse (SM) units. A 3D survey was conducted over this test site using a newly developed three-streamer system. It provided high-quality data with a penetration to depths of 300 m below the water bottom of non-aliased signal for dips up to 30degrees and with a maximum vertical resolution of 1.1 m. The data were subjected to a conventional 3D processing sequence that included post-stack time migration. Tests with 3D pre-stack depth migration showed that such techniques can be applied to HR seismic surveys. Delineation of several horizons and fault surfaces reveals the potential for small-scale geologic and tectonic interpretation in three dimensions. Five major seismic facies and their detailed 3D geometries can be distinguished. Three fault surfaces and the top of a molasse surface were mapped in 3D. Analysis of the geometry of these surfaces and their relative orientation suggests that pre-existing structures within the Plateau Molasse (PM) unit influenced later faulting between the Plateau and SM. In particular, a change in strike of the PM bed dip may indicate a fold formed by a regional stress regime, the orientation of which was different from the one responsible for the creation of the Paudeze Fault Zone. This structure might have later influenced the local stress regime and caused the curved shape of the Paudeze Fault in our surveyed area.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The demand for research in the area of safety health and environmental management of nanotechnologies is present since a decade and identified by several landmark reports and studies. It is not the intention of this compendium to report on these as they are widely available. It is also not the intention to publish scientific papers and research results as this task is covered by scientific conferences and the peer reviewed press. The intention of the compendium is to bring together researchers, create synergy in their work, and establish links and communication between them mainly during the actual research phase before publication of results. Towards this purpose we find useful to give emphasis to communication of projects strategic aims, extensive coverage of specific work objectives and of methods used in research, strengthening human capacities and laboratories infrastructure, supporting collaboration for common goals and joint elaboration of future plans, without compromising scientific publication potential or IP Rights. These targets are far from being achieved with the publication in its present shape. We shall continue working, though, and hope with the assistance of the research community to make significant progress. We would like to stress that this sector is under development and progressing very fast, which might make some of the statements outdated or even obsolete. Nevertheless it is intended to provide a basis for the necessary future developments. [Ed.]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This review paper reports the consensus of a technical workshop hosted by the European network, NanoImpactNet (NIN). The workshop aimed to review the collective experience of working at the bench with manufactured nanomaterials (MNMs), and to recommend modifications to existing experimental methods and OECD protocols. Current procedures for cleaning glassware are appropriate for most MNMs, although interference with electrodes may occur. Maintaining exposure is more difficult with MNMs compared to conventional chemicals. A metal salt control is recommended for experiments with metallic MNMs that may release free metal ions. Dispersing agents should be avoided, but if they must be used, then natural or synthetic dispersing agents are possible, and dispersion controls essential. Time constraints and technology gaps indicate that full characterisation of test media during ecotoxicity tests is currently not practical. Details of electron microscopy, dark-field microscopy, a range of spectroscopic methods (EDX, XRD, XANES, EXAFS), light scattering techniques (DLS, SLS) and chromatography are discussed. The development of user-friendly software to predict particle behaviour in test media according to DLVO theory is in progress, and simple optical methods are available to estimate the settling behaviour of suspensions during experiments. However, for soil matrices such simple approaches may not be applicable. Alternatively, a Critical Body Residue approach may be taken in which body concentrations in organisms are related to effects, and toxicity thresholds derived. For microbial assays, the cell wall is a formidable barrier to MNMs and end points that rely on the test substance penetrating the cell may be insensitive. Instead assays based on the cell envelope should be developed for MNMs. In algal growth tests, the abiotic factors that promote particle aggregation in the media (e.g. ionic strength) are also important in providing nutrients, and manipulation of the media to control the dispersion may also inhibit growth. Controls to quantify shading effects, and precise details of lighting regimes, shaking or mixing should be reported in algal tests. Photosynthesis may be more sensitive than traditional growth end points for algae and plants. Tests with invertebrates should consider non-chemical toxicity from particle adherence to the organisms. The use of semi-static exposure methods with fish can reduce the logistical issues of waste water disposal and facilitate aspects of animal husbandry relevant to MMNs. There are concerns that the existing bioaccumulation tests are conceptually flawed for MNMs and that new test(s) are required. In vitro testing strategies, as exemplified by genotoxicity assays, can be modified for MNMs, but the risk of false negatives in some assays is highlighted. In conclusion, most protocols will require some modifications and recommendations are made to aid the researcher at the bench. [Authors]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is growing evidence that nonlinear time series analysis techniques can be used to successfully characterize, classify, or process signals derived from realworld dynamics even though these are not necessarily deterministic and stationary. In the present study we proceed in this direction by addressing an important problem our modern society is facing, the automatic classification of digital information. In particular, we address the automatic identification of cover songs, i.e. alternative renditions of a previously recorded musical piece. For this purpose we here propose a recurrence quantification analysis measure that allows tracking potentially curved and disrupted traces in cross recurrence plots. We apply this measure to cross recurrence plots constructed from the state space representation of musical descriptor time series extracted from the raw audio signal. We show that our method identifies cover songs with a higher accuracy as compared to previously published techniques. Beyond the particular application proposed here, we discuss how our approach can be useful for the characterization of a variety of signals from different scientific disciplines. We study coupled Rössler dynamics with stochastically modulated mean frequencies as one concrete example to illustrate this point.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this study was to design microspheres combining sustained delivery and enhanced intracellular penetration for ocular administration of antisense oligonucleotides. Nanosized complexes of antisense TGF-beta2 phosphorothioate oligonucleotides (PS-ODN) with polyethylenimine (PEI), and naked PS-ODN were encapsulated into poly(lactide-co-glycolide) microspheres prepared by the double-emulsion solvent evaporation method. The PS-ODN was introduced either naked or complexed in the inner aqueous phase of the first emulsion. We observed a marked influence of microsphere composition on porosity, size distribution and PS-ODN encapsulation efficiency. Mainly, the presence of PEI induced the formation of large pores observed onto microsphere surface. Introduction of NaCl in the outer aqueous phase increased the encapsulation efficiency and reduced microsphere porosity. In vitro release kinetic of PS-ODN was also investigated. Clearly, the higher the porosity, the faster was the release and the higher was the burst effect. Using an analytical solution of Fick's second law of diffusion, it was shown that the early phase of PS-ODN and PS-ODN-PEI complex release was primarily controlled by pure diffusion, irrespectively of the type of microsphere. Finally, microspheres containing antisense TGF-beta2 nanosized complexes were shown, after subconjunctival administration to rabbit, to significantly increase intracellular penetration of ODN in conjunctival cells and subsequently to improve bleb survival in a rabbit experimental model of filtering surgery. These results open up interesting prospective for the local controlled delivery of genetic material into the eye.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[Table des matières] 1. Introduction to the control banding method : Nanomaterials and occupational risk assessment; Alternative method known as control banding; Scope and limits of control banding. - 2. Control banding process applied to manufactured nanomaterials: General points; Operating principle. - 3. Implementation of control banding: Gathering of information; Hazard bands; Exposure bands; Allocation of risk control bands. - 4. Bibliography: Publications; Books, reports, opinions, bulletins; Standards and references; Legislation and regulations; Websites. - Annexes

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Whirligig beetles (Gyrinidae) inhabit water surfaces and possess unique eyes which are split into the overwater and underwater parts. In this study we analyze the micro- and nanostructure of the split eyes of two Gyrinidae beetles genera, Gyrinus and Orectochilus. We find that corneae of the overwater ommatidia are covered with maze-like nanostructures, while the corneal surface of the underwater eyes is smooth. We further show that the overwater nanostructures possess no anti-wetting, but the anti-reflective properties with the spectral preference in the range of 450-600 nm. These findings illustrate the adaptation of the corneal nanocoating of the two halves of an insect's eye to two different environments. The novel natural anti-reflective nanocoating we describe may find future technological applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Leschenaultia barbarae sp. nov. is described from Cojedes state, Venezuela. This species is similar to Leschenaultia bicolor (Macquart, 1846) but can be distinguished from this species by the combination of the following characters: anterior tarsal claws longer than second tarsomere of the same leg, and cerci, in lateral view, finer and no so strongly curved back as in L. bicolor (Macquart).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lithium is widely used in psychotherapy. The (6)Li isotope has a long intrinsic longitudinal relaxation time T(1) on the order of minutes, making it an ideal candidate for hyperpolarization experiments. In the present study we demonstrated that lithium-6 can be readily hyperpolarized within 30 min, while retaining a long polarization decay time on the order of a minute. We used the intrinsically long relaxation time for the detection of 500 nM contrast agent in vitro. Hyperpolarized lithium-6 was administered to the rat and its signal retained a decay time on the order of 70 sec in vivo. Localization experiments imply that the lithium signal originated from within the brain and that it was detectable up to 5 min after administration. We conclude that the detection of submicromolar contrast agents using hyperpolarized NMR nuclei such as (6)Li may provide a novel avenue for molecular imaging.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recientes investigaciones en el campo de los materiales cerámicos han dado cuenta de la importancia de la metaestabilidad para obtener estructuras con características singulares. Durante la consolidación del material las fases mestaestables se transforman en una estructura donde se produce la inhibición del crecimiento de grano. Este efecto es una consecuencia directa de la inmiscibilidad de dos fases en estado sólido. Los nanocomposites conseguidos, gracias a su pequeño tamaño de grano y a su estructura uniforme, exhiben unas interesantes propiedades como elevada dureza y tenacidad. Estas fases metaestables pueden ser producidas por diversas técnicas entre las que se encuentra la proyección térmica. En concreto en este trabajo se ha empleado la Proyección por plasma (APS). Las fases de partida inmiscibles, son fundidas y homogeneizadas durante su corta estancia en la zona caliente del plasma. Seguidamente, las partículas fundidas y aceleradas por el plasma, se someten a un enfriamiento rápido o temple (quenching) en un medio líquido, como el agua o en un substrato enfriado con nitrógeno líquido, formándose a través de este proceso las fases metaestables. El principal objetivo de este trabajo ha sido la obtención de polvos cerámicos metastables a través de la aplicación de APS y el establecimiento de un proceso de temple conducente a la formación de fases metastables así como la caracterización estructural de éstas. Como última etapa del trabajo se han estudiado los materiales nanoestructurados conseguidos tras realizar tratamientos térmicos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite numerous discussions, workshops, reviews and reports about responsible development of nanotechnology, information describing health and environmental risk of engineered nanoparticles or nanomaterials is severely lacking and thus insufficient for completing rigorous risk assessment on their use. However, since preliminary scientific evaluations indicate that there are reasonable suspicions that activities involving nanomaterials might have damaging effects on human health; the precautionary principle must be applied. Public and private institutions as well as industries have the duty to adopt preventive and protective measures proportionate to the risk intensity and the desired level of protection. In this work, we present a practical, 'user-friendly' procedure for a university-wide safety and health management of nanomaterials, developed as a multi-stakeholder effort (government, accident insurance, researchers and experts for occupational safety and health). The process starts using a schematic decision tree that allows classifying the nano laboratory into three hazard classes similar to a control banding approach (from Nano 3 - highest hazard to Nano1 - lowest hazard). Classifying laboratories into risk classes would require considering actual or potential exposure to the nanomaterial as well as statistical data on health effects of exposure. Due to the fact that these data (as well as exposure limits for each individual material) are not available, risk classes could not be determined. For each hazard level we then provide a list of required risk mitigation measures (technical, organizational and personal). The target 'users' of this safety and health methodology are researchers and safety officers. They can rapidly access the precautionary hazard class of their activities and the corresponding adequate safety and health measures. We succeed in convincing scientist dealing with nano-activities that adequate safety measures and management are promoting innovation and discoveries by ensuring them a safe environment even in the case of very novel products. The proposed measures are not considered as constraints but as a support to their research. This methodology is being implemented at the Ecole Polytechnique de Lausanne in over 100 research labs dealing with nanomaterials. It is our opinion that it would be useful to other research and academia institutions as well. [Authors]