999 resultados para Cr-51-release
Resumo:
BACKGROUND: Bariatric surgery markedly improves glucose homeostasis in patients with type 2 diabetes even before any significant weight loss is achieved. Procedures that involve bypassing the proximal small bowel, such as Roux-en-Y gastric bypass (RYGBP), are more efficient than gastric restriction procedures such as gastric banding (GB). OBJECTIVE: To evaluate the effects of RYGBP and GB on postprandial glucose kinetics and gastro-intestinal hormone secretion after an oral glucose load. METHODS AND PROCEDURES: This study was a cross-sectional comparison among non-diabetic, weight-stable women who had undergone RYGBP (n = 8) between 9 and 48 months earlier or GB (n = 6) from 25 to 85 months earlier, and weight- and age-matched control subjects (n = 8). The women were studied over 4 h following ingestion of an oral glucose load. Total glucose and meal glucose kinetics were assessed using glucose tracers and plasma insulin, and gut hormone concentrations were simultaneously monitored. RESULTS: Patients who had undergone RYGBP showed a a more rapid appearance of exogenous glucose in the systemic circulation and a shorter duration of postprandial hyperglycemia than patients who had undergone GB and C. The response in RYGBP patients was characterized by early and accentuated insulin response, enhanced postprandial levels of glucagon-like peptide-1 (GLP-1) and polypeptide YY (PYY), and greater postprandial suppression of ghrelin. DISCUSSION: These findings indicate that RYGBP is associated with alterations in glucose kinetics and glucoregulatory hormone secretion. These alterations are probably secondary to the anatomic rearrangement of the foregut, given the fact that they are not observed after GB. Increased PYY and GLP-1 concentrations and enhanced ghrelin suppression are compatible with reduced food intake after RYGBP.
Resumo:
In several studies reporting cell death (CD) in lower eukaryotes and in the human protozoan parasite Leishmania, proteolytic activity was revealed using pan-caspase substrates or inhibitors such as carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketone (Z-VAD-FMK). However, most of the lower eukaryotes do not encode caspase(s) but MCA, which differs from caspase(s) in its substrate specificity and cannot be accountable for the recognition of Z-VAD-FMK. In the present study, we were interested in identifying which enzyme was capturing the Z-VAD substrate. We show that heat shock (HS) induces Leishmania CD and leads to the intracellular binding of Z-VAD-FMK. We excluded binding and inhibition of Z-VAD-FMK to Leishmania major metacaspase (LmjMCA), and identified cysteine proteinase C (LmjCPC), a cathepsin B-like (CPC) enzyme, as the Z-VAD-FMK binding enzyme. We confirmed the specific interaction of Z-VAD-FMK with CPC by showing that Z-VAD binding is absent in a Leishmania mexicana strain in which the cpc gene was deleted. We also show that parasites exposed to various stress conditions release CPC into a soluble fraction. Finally, we confirmed the role of CPC in Leishmania CD by showing that, when exposed to the oxidizing agent hydrogen peroxide (H(2)O(2)), cpc knockout parasites survived better than wild-type parasites (WT). In conclusion, this study identified CPC as the substrate of Z-VAD-FMK in Leishmania and as a potential additional executioner protease in the CD cascade of Leishmania and possibly in other lower eukaryotes.
Resumo:
Glucose production by liver is a major physiological function, which is required to prevent development of hypoglycemia in the postprandial and fasted states. The mechanism of glucose release from hepatocytes has not been studied in detail but was assumed instead to depend on facilitated diffusion through the glucose transporter GLUT2. Here, we demonstrate that in the absence of GLUT2 no other transporter isoforms were overexpressed in liver and only marginally significant facilitated diffusion across the hepatocyte plasma membrane was detectable. However, the rate of hepatic glucose output was normal. This was evidenced by (i) the hyperglycemic response to i.p. glucagon injection; (ii) the in vivo measurement of glucose turnover rate; and (iii) the rate of release of neosynthesized glucose from isolated hepatocytes. These observations therefore indicated the existence of an alternative pathway for hepatic glucose output. Using a [14C]-pyruvate pulse-labeling protocol to quantitate neosynthesis and release of [14C]glucose, we demonstrated that this pathway was sensitive to low temperature (12 degreesC). It was not inhibited by cytochalasin B nor by the intracellular traffic inhibitors brefeldin A and monensin but was blocked by progesterone, an inhibitor of cholesterol and caveolae traffic from the endoplasmic reticulum to the plasma membrane. Our observations thus demonstrate that hepatic glucose release does not require the presence of GLUT2 nor of any plasma membrane glucose facilitative diffusion mechanism. This implies the existence of an as yet unsuspected pathway for glucose release that may be based on a membrane traffic mechanism.
Resumo:
An overview is presented of the results obtained with biodegradable sustained release devices (SRDs) containing a mixture of polymers and either isometamidium (ISMM) or ethidium. Under controlled laboratory conditions (monthly challenge with tsetse flies infected with Trypanosoma congolense) the protection period in SRD treated cattle could be extended by a factor 2.8 (for ethidium) up to 4.2 (for ISMM) as compared to animals treated intramuscularly with the same drugs. Using a competitive drug ELISA ISMM concentrations were detected up to 330 days after the implantation of the SRDs, whereas after i.m. injection the drug was no longer present three to four months post treatment. Two field trials carried out in Mali under heavy tsetse challenge showed that the cumulative infection rate was significantly lower in the ISMM-SRD implanted cattle than in those which received ISMM intramuscularly. Using ethidium SRD, however, contradictory results were obtained in field trials in Zambia and in Mali. The potential advantages and inconvenients of the use of SRDs are discussed and suggestions are made in order to further improve the currently available devices.
Resumo:
Water-soluble metalla-cages were used to deliver hydrophobic porphin molecules to cancer cells. After internalization, the photosensitizer was photoactivated, significantly increasing the cytotoxicity in cells. During the transport, the photosensitizer remains nonreactive to light, offering a new strategy to tackle overall photosensitization, a limitation often encountered in photodynamic therapy.
Resumo:
Addictive properties of drugs of misuse are generally considered to be mediated by an increased release of dopamine (DA) in the ventral striatum. However, recent experiments indicated an implication of alpha1b-adrenergic receptors in behavioural responses to psychostimulants and opiates. We show now that DA release induced in the ventral striatum by morphine (20 mg/kg) is completely blocked by prazosin (1 mg/kg), an alpha1-adrenergic antagonist. However, morphine-induced increases in DA release in the ventral striatum were found to be similar in mice deleted for the alpha1b-adrenergic receptor (alpha1b-AR KO) and in wild-type (WT) mice, suggesting the presence of a compensatory mechanism. This acute morphine-evoked DA release was completely blocked in alpha1b-AR KO mice by SR46349B (1 mg/kg), a 5-HT2A antagonist. SR46349B also completely blocked, in alpha1b-AR KO mice, the locomotor response and the development of behavioural sensitization to morphine (20 mg/kg) and D-amphetamine (2 mg/kg). Accordingly, the concomitant blockade of 5-HT2A and alpha1b-adrenergic receptors in WT mice entirely blocked acute locomotor responses but also the development of behavioural sensitization to morphine, D-amphetamine or cocaine (10 mg/kg). We observed, nevertheless, that inhibitory effects of each antagonist on locomotor responses to morphine or D-amphetamine were more than additive (160%) in naïve WT mice but not in those sensitized to either drug. Because of these latter data and the possible compensation by 5-HT2A receptors for the genetic deletion of alpha1b-adrenergic receptors, we postulate the existence of a functional link between these receptors, which vanishes during the development of behavioural sensitization.
Resumo:
2008/09 Pre-Release Access List
Resumo:
Pre Release Access List
Resumo:
Pre Release Access list for Bulletin 5 Drug Prevalence Survey 2006/07
Resumo:
Report for the scientific sojourn at the the Philipps-Universität Marburg, Germany, from september to december 2007. For the first, we employed the Energy-Decomposition Analysis (EDA) to investigate aromaticity on Fischer carbenes as it is related through all the reaction mechanisms studied in my PhD thesis. This powerful tool, compared with other well-known aromaticity indices in the literature like NICS, is useful not only for quantitative results but also to measure the degree of conjugation or hyperconjugation in molecules. Our results showed for the annelated benzenoid systems studied here, that electron density is more concentrated on the outer rings than in the central one. The strain-induced bond localization plays a major role as a driven force to keep the more substituted ring as the less aromatic. The discussion presented in this work was contrasted at different levels of theory to calibrate the method and ensure the consistency of our results. We think these conclusions can also be extended to arene chemistry for explaining aromaticity and regioselectivity reactions found in those systems.In the second work, we have employed the Turbomole program package and density-functionals of the best performance in the state of art, to explore reaction mechanisms in the noble gas chemistry. Particularly, we were interested in compounds of the form H--Ng--Ng--F (where Ng (Noble Gas) = Ar, Kr and Xe) and we investigated the relative stability of these species. Our quantum chemical calculations predict that the dixenon compound HXeXeF has an activation barrier for decomposition of 11 kcal/mol which should be large enough to identify the molecule in a low-temperature matrix. The other noble gases present lower activation barriers and therefore are more labile and difficult to be observable systems experimentally.
Resumo:
Recent studies have led to the discovery of a mediator that acts as an endogenous counter-regulator of glucocorticoid action within the immune system. Isolated as a product of anterior pituitary cells, this protein was found to have the sequence of macrophage migration inhibitory factor (MIF), one of the first cytokine activities to be described. Macrophages and T cells release MIF in response both to various inflammatory stimuli and upon incubation with low concentrations of glucocorticoids. The glucocorticoid-induced secretion of MIF is tightly regulated and decreases at high, anti-inflammatory steroid concentrations. Once secreted, MIF "overrides" the anti-inflammatory and immunosuppressive effects of steroids on macrophage and T-cell cytokine production. The physiological role of MIF thus appears to be to counter-balance steroid inhibition of the inflammatory response. Anti-MIF antibodies fully protect animals from experimentally induced gram-negative or gram-positive septic shock, an effect that may be the result of the increased anti-inflammatory effects of glucocorticoids after neutralization of endogenous MIF. Anti-MIF therapeutic strategies are presently under development and may prove to be a means to modulate cytokine production in septic shock as well as in other inflammatory disease states.
Resumo:
Neurons fire by releasing neurotransmitters via fusion of synaptic vesicles with the plasma membrane. Fusion can be evoked by an incoming signal from a preceding neuron or can occur spontaneously. Synaptic vesicle fusion requires the formation of trans complexes between SNAREs as well as Ca(2+) ions. Wang et al. (2014. J. Cell Biol. http://dx.doi.org/jcb.201312109) now find that the Ca(2+)-binding protein Calmodulin promotes spontaneous release and SNARE complex formation via its interaction with the V0 sector of the V-ATPase.
Resumo:
HSS (F)2004 04/04 - Revised Cost of Capital Rate in Fees and Charges Recovery Policy