984 resultados para Control digital
Resumo:
The numerical solution of stochastic differential equations (SDEs) has been focussed recently on the development of numerical methods with good stability and order properties. These numerical implementations have been made with fixed stepsize, but there are many situations when a fixed stepsize is not appropriate. In the numerical solution of ordinary differential equations, much work has been carried out on developing robust implementation techniques using variable stepsize. It has been necessary, in the deterministic case, to consider the best choice for an initial stepsize, as well as developing effective strategies for stepsize control-the same, of course, must be carried out in the stochastic case. In this paper, proportional integral (PI) control is applied to a variable stepsize implementation of an embedded pair of stochastic Runge-Kutta methods used to obtain numerical solutions of nonstiff SDEs. For stiff SDEs, the embedded pair of the balanced Milstein and balanced implicit method is implemented in variable stepsize mode using a predictive controller for the stepsize change. The extension of these stepsize controllers from a digital filter theory point of view via PI with derivative (PID) control will also be implemented. The implementations show the improvement in efficiency that can be attained when using these control theory approaches compared with the regular stepsize change strategy. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Small groups of athletes (maximum size 8) were taught to voluntarily control their finger temperature, in a test of the feasibility of thermal biofeedback as a tool for coaches. The objective was to decrease precompetitive anxiety among the 140 young, competitive athletes (track and field, N=61; swimming, N=79), 66 females and 74 males, mean age 14.8 years, age range 8.9-20.5 years, from local high schools and swimming clubs. The biofeedback (visual and auditory) was provided by small, battery-powered devices that were connected to thermistors attached to the middle finger of the dominant hand. An easily readable digital LCD display, in 0.01 degrees C increments, provided visual feedback, while a musical tone, which descended in pitch with increased finger temperature, provided the audio component via small headphones. Eight twenty minute sessions were scheduled, with 48 hours between sessions. The measures employed in this prestest-posttest study were Levenson's locus of control scale (IPC), and the Competitive Sport Anxiety Inventory (CSAI-2). The results indicated that, while significant control of finger temperature was achieved, F(1, 160)=5.30, p
Resumo:
This paper presents results from the first use of neural networks for the real-time feedback control of high temperature plasmas in a Tokamak fusion experiment. The Tokamak is currently the principal experimental device for research into the magnetic confinement approach to controlled fusion. In the Tokamak, hydrogen plasmas, at temperatures of up to 100 Million K, are confined by strong magnetic fields. Accurate control of the position and shape of the plasma boundary requires real-time feedback control of the magnetic field structure on a time-scale of a few tens of microseconds. Software simulations have demonstrated that a neural network approach can give significantly better performance than the linear technique currently used on most Tokamak experiments. The practical application of the neural network approach requires high-speed hardware, for which a fully parallel implementation of the multi-layer perceptron, using a hybrid of digital and analogue technology, has been developed.
Resumo:
This work reports the developnent of a mathenatical model and distributed, multi variable computer-control for a pilot plant double-effect climbing-film evaporator. A distributed-parameter model of the plant has been developed and the time-domain model transformed into the Laplace domain. The model has been further transformed into an integral domain conforming to an algebraic ring of polynomials, to eliminate the transcendental terms which arise in the Laplace domain due to the distributed nature of the plant model. This has made possible the application of linear control theories to a set of linear-partial differential equations. The models obtained have well tracked the experimental results of the plant. A distributed-computer network has been interfaced with the plant to implement digital controllers in a hierarchical structure. A modern rnultivariable Wiener-Hopf controller has been applled to the plant model. The application has revealed a limitation condition that the plant matrix should be positive-definite along the infinite frequency axis. A new multi variable control theory has emerged fram this study, which avoids the above limitation. The controller has the structure of the modern Wiener-Hopf controller, but with a unique feature enabling a designer to specify the closed-loop poles in advance and to shape the sensitivity matrix as required. In this way, the method treats directly the interaction problems found in the chemical processes with good tracking and regulation performances. Though the ability of the analytical design methods to determine once and for all whether a given set of specifications can be met is one of its chief advantages over the conventional trial-and-error design procedures. However, one disadvantage that offsets to some degree the enormous advantages is the relatively complicated algebra that must be employed in working out all but the simplest problem. Mathematical algorithms and computer software have been developed to treat some of the mathematical operations defined over the integral domain, such as matrix fraction description, spectral factorization, the Bezout identity, and the general manipulation of polynomial matrices. Hence, the design problems of Wiener-Hopf type of controllers and other similar algebraic design methods can be easily solved.
Resumo:
The integration of a microprocessor and a medium power stepper motor in one control system brings together two quite different disciplines. Various methods of interfacing are examined and the problems involved in both hardware and software manipulation are investigated. Microprocessor open-loop control of the stepper motor is considered. The possible advantages of microprocessor closed-loop control are examined and the development of a system is detailed. The system uses position feedback to initiate each motor step. Results of the dynamic response of the system are presented and its performance discussed. Applications of the static torque characteristic of the stepper motor are considered followed by a review of methods of predicting the characteristic. This shows that accurate results are possible only when the effects of magnetic saturation are avoided or when the machine is available for magnetic circuit tests to be carried out. A new method of predicting the static torque characteristic is explained in detail. The method described uses the machine geometry and the magnetic characteristics of the iron types used in the machine. From this information the permeance of each iron component of the machine is calculated and by using the equivalent magnetic circuit of the machine, the total torque produced is predicted. It is shown how this new method is implemented on a digital computer and how the model may be used to investigate further aspects of the stepper motor in addition to the static torque.
Resumo:
The advent of the Integrated Services Digital Network (ISDN) led to the standardisation of the first video codecs for interpersonal video communications, followed closely by the development of standards for the compression, storage and distribution of digital video in the PC environment, mainly targeted at CD-ROM storage. At the same time the second-generation digital wireless networks, and the third-generation networks being developed, have enough bandwidth to support digital video services. The radio propagation medium is a difficult environment in which to deploy low bit error rate, real time services such as video. The video coding standards designed for ISDN and storage applications, were targeted at low bit error rate levels, orders of magnitude lower than the typical bit error rates experienced on wireless networks. This thesis is concerned with the transmission of digital, compressed video over wireless networks. It investigates the behaviour of motion compensated, hybrid interframe DPCM/DCT video coding algorithms, which form the basis of current coding algorithms, in the presence of high bit error rates commonly found on digital wireless networks. A group of video codecs, based on the ITU-T H.261 standard, are developed which are robust to the burst errors experienced on radio channels. The radio link is simulated at low level, to generate typical error files that closely model real world situations, in a Rayleigh fading environment perturbed by co-channel interference, and on frequency selective channels which introduce inter symbol interference. Typical anti-multipath techniques, such as antenna diversity, are deployed to mitigate the effects of the channel. Link layer error control techniques are also investigated.
Resumo:
Distributed digital control systems provide alternatives to conventional, centralised digital control systems. Typically, a modern distributed control system will comprise a multi-processor or network of processors, a communications network, an associated set of sensors and actuators, and the systems and applications software. This thesis addresses the problem of how to design robust decentralised control systems, such as those used to control event-driven, real-time processes in time-critical environments. Emphasis is placed on studying the dynamical behaviour of a system and identifying ways of partitioning the system so that it may be controlled in a distributed manner. A structural partitioning technique is adopted which makes use of natural physical sub-processes in the system, which are then mapped into the software processes to control the system. However, communications are required between the processes because of the disjoint nature of the distributed (i.e. partitioned) state of the physical system. The structural partitioning technique, and recent developments in the theory of potential controllability and observability of a system, are the basis for the design of controllers. In particular, the method is used to derive a decentralised estimate of the state vector for a continuous-time system. The work is also extended to derive a distributed estimate for a discrete-time system. Emphasis is also given to the role of communications in the distributed control of processes and to the partitioning technique necessary to design distributed and decentralised systems with resilient structures. A method is presented for the systematic identification of necessary communications for distributed control. It is also shwon that the structural partitions can be used directly in the design of software fault tolerant concurrent controllers. In particular, the structural partition can be used to identify the boundary of the conversation which can be used to protect a specific part of the system. In addition, for certain classes of system, the partitions can be used to identify processes which may be dynamically reconfigured in the event of a fault. These methods should be of use in the design of robust distributed systems.
Resumo:
There is a growing demand for data transmission over digital networks involving mobile terminals. An important class of data required for transmission over mobile terminals is image information such as street maps, floor plans and identikit images. This sort of transmission is of particular interest to the service industries such as the Police force, Fire brigade, medical services and other services. These services cannot be applied directly to mobile terminals because of the limited capacity of the mobile channels and the transmission errors caused by the multipath (Rayleigh) fading. In this research, transmission of line diagram images such as floor plans and street maps, over digital networks involving mobile terminals at transmission rates of 2400 bits/s and 4800 bits/s have been studied. A low bit-rate source encoding technique using geometric codes is found to be suitable to represent line diagram images. In geometric encoding, the amount of data required to represent or store the line diagram images is proportional to the image detail. Thus a simple line diagram image would require a small amount of data. To study the effect of transmission errors due to mobile channels on the transmitted images, error sources (error files), which represent mobile channels under different conditions, have been produced using channel modelling techniques. Satisfactory models of the mobile channel have been obtained when compared to the field test measurements. Subjective performance tests have been carried out to evaluate the quality and usefulness of the received line diagram images under various mobile channel conditions. The effect of mobile transmission errors on the quality of the received images has been determined. To improve the quality of the received images under various mobile channel conditions, forward error correcting codes (FEC) with interleaving and automatic repeat request (ARQ) schemes have been proposed. The performance of the error control codes have been evaluated under various mobile channel conditions. It has been shown that a FEC code with interleaving can be used effectively to improve the quality of the received images under normal and severe mobile channel conditions. Under normal channel conditions, similar results have been obtained when using ARQ schemes. However, under severe mobile channel conditions, the FEC code with interleaving shows better performance.
Resumo:
Open-loop operatlon of the stepping motor exploits the inherent advantages of the machine. For near optimum operation: in this mode, however, an accurate system model is required to facilitate controller design. Such a model must be comprehensive and take account of the non-linearities inherent in the system. The result is a complex formulation which can be made manageable with a computational aid. A digital simulation of a hybrid type stepping motor and its associated drive circuit is proposed. The simulation is based upon a block diagram model which includes reasonable approximations to the major non-linearities. The simulation is shown to yield accurate performance predictions. The determination of the transfer functions is based upon the consideration of the physical processes involved rather than upon direct input-outout measurements. The effects of eddy currents, saturation, hysteresis, drive circuit characteristics and non-linear torque displacement characteristics are considered and methods of determining transfer functions, which take account of these effects, are offered. The static torque displacement characteristic is considered in detail and a model is proposed which predicts static torque for any combination of phase currents and shaft position. Methods of predicting the characteristic directly from machine geometry are investigated. Drive circuit design for high efficiency operation is considered and a model of a bipolar, bilevel circuit is proposed. The transfers between stator voltage and stator current and between stator current and air gap flux are complicated by the effects of eddy currents, saturation and hysteresis. Frequency response methods, combined with average inductance measurements, are shown to yield reasonable transfer functions. The modelling procedure and subsequent digital simulation is concluded to be a powerful method of non-linear analysis.
Resumo:
Free Paper Sessions Design. Retrospective analysis. Purpose. To assess the prevalence of center-involving diabetic macular oedema (CIDMO) and risk factors. Methods. Retrospective review of patients who were screen positive for maculopathy (M1) during 2010 in East and North Birmingham. The CIDMO was diagnosed by qualitative identification of definite foveal oedema on optical coherence tomography (OCT). Results. Out of a total of 15,234 patients screened, 1194 (7.8%) were screen positive for M1 (64% bilateral). A total of 137 (11.5% of M1s) were diagnosed with macular oedema after clinical assessment. The OCT results were available for 123/137; 69 (56.1%) of these had CI-DMO (30 bilateral) which is 0.5% of total screens and 5.8% of those screen positive for M1. In those with CIDMO 60.9% were male and 63.8% Caucasian; 90% had type 2 diabetes and mean diabetes duration was 20 years (SD 9.7, range 2-48). Mean HbA1c was 8.34%±1.69, with 25% having an HbA1c =9%. Furthermore, 62% were on insulin, 67% were on antihypertensive therapy, and 64% were on a cholesterol-lowering drug. A total of 37.7% had an eGFR between 30% and 60% and 5.8% had eGFR <30. The only significant difference between the CIDMO and non-CIDMO group was mean age (67.83±12.26 vs 59.69±15.82; p=0.002). A total of 65.2% of those with CIDMO also had proliferative or preproliferative retinopathy in the worst eye and 68.1% had subsequently been treated with macular laser at the time of data review. Conclusions. The results show that the prevalence of CIDMO in our diabetic population was 0.5%. A significant proportion of macula oedema patients were found to have type 2 diabetes with long disease duration, suboptimal glycemic and hypertensive control, and low eGFR. The data support that medical and diabetic review of CIDMO patients is warranted particularly in the substantial number with poor glycemic control and if intravitreal therapies are indicated.
Resumo:
Trauma and damage to the delicate structures of the inner ear frequently occurs during insertion of electrode array into the cochlea. This is strongly related to the excessive manual insertion force of the surgeon without any tool/tissue interaction feedback. The research is examined tool-tissue interaction of large prototype scale (12.5:1) digit embedded with distributive tactile sensor based upon cochlear electrode and large prototype scale (4.5:1) cochlea phantom for simulating the human cochlear which could lead to small scale digit requirements. This flexible digit classified the tactile information from the digit-phantom interaction such as contact status, tip penetration, obstacles, relative shape and location, contact orientation and multiple contacts. The digit, distributive tactile sensors embedded with silicon-substrate is inserted into the cochlea phantom to measure any digit/phantom interaction and position of the digit in order to minimize tissue and trauma damage during the electrode cochlear insertion. The digit is pre-curved in cochlea shape so that the digit better conforms to the shape of the scala tympani to lightly hug the modiolar wall of a scala. The digit have provided information on the characteristics of touch, digit-phantom interaction during the digit insertion. The tests demonstrated that even devices of such a relative simple design with low cost have potential to improve cochlear implants surgery and other lumen mapping applications by providing tactile feedback information by controlling the insertion through sensing and control of the tip of the implant during the insertion. In that approach, the surgeon could minimize the tissue damage and potential damage to the delicate structures within the cochlear caused by current manual electrode insertion of the cochlear implantation. This approach also can be applied diagnosis and path navigation procedures. The digit is a large scale stage and could be miniaturized in future to include more realistic surgical procedures.
Resumo:
The development of the distributed information measurement and control system for optical spectral research of particle beam and plasma objects and the execution of laboratory works on Physics and Engineering Department of Petrozavodsk State University are described. At the hardware level the system is represented by a complex of the automated workplaces joined into computer network. The key element of the system is the communication server, which supports the multi-user mode and distributes resources among clients, monitors the system and provides secure access. Other system components are formed by equipment servers (CАМАC and GPIB servers, a server for the access to microcontrollers MCS-196 and others) and the client programs that carry out data acquisition, accumulation and processing and management of the course of the experiment as well. In this work the designed by the authors network interface is discussed. The interface provides the connection of measuring and executive devices to the distributed information measurement and control system via Ethernet. This interface allows controlling of experimental parameters by use of digital devices, monitoring of experiment parameters by polling of analog and digital sensors. The device firmware is written in assembler language and includes libraries for Ethernet-, IP-, TCP- и UDP-packets forming.
Resumo:
This paper proposes a methodological scheme for the photovoltaic (PV) simulator design. With the advantages of a digital controller system, linear interpolation is proposed for precise fitting with higher computational efficiency. A novel control strategy that directly tackles two different duty cycles is proposed and implemented to achieve a full-range operation including short circuit (SC) and open circuit (OC) conditions. Systematic design procedures for both hardware and algorithm are explained, and a prototype is built. Experimental results confirm an accurate steady state performance under different load conditions, including SC and OC. This low power apparatus can be adopted for PV education and research with a limited budget.
Resumo:
Measurement assisted assembly (MAA) has the potential to facilitate a step change in assembly efficiency for large structures such as airframes through the reduction of rework, manually intensive processes and expensive monolithic assembly tooling. It is shown how MAA can enable rapid part-to-part assembly, increased use of flexible automation, traceable quality assurance and control, reduced structure weight and improved aerodynamic tolerances. These advances will require the development of automated networks of measurement instruments; model based thermal compensation, the automatic integration of 'live' measurement data into variation simulation and algorithms to generate cutting paths for predictive shimming and drilling processes. This paper sets out an architecture for digital systems which will enable this integrated approach to variation management. © 2013 The Authors.
Resumo:
The iridescentb lue color of several Selaginellasp ecies is caused by a physical effect, thinfilm interference.P redictionsf or a model film have been confirmedb y electronm icroscopyo f S. willdenowaEnid S. uncinataF. or the latters pecies iridescencec ontributest o leaf absorption at wavelengths above 450 nm and develops in environments enriched with far-red (730 nm) light. This evidence supports the involvement of phytochrome in the developmental control of iridescence.